NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DESIGN OF A FINANCIAL MANAGEMENT
SYSTEM FOR THE ACADEMIC
DEPARTMENTS AT THE
NAVAL POSTGRADUATE SCHOOL

by

Alan E. Pires

March, 1997

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

.....

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per respons, including the time for reviewing instruction, searching existing data
sources, gatheting and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave bIank)' 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March, 1997 Master’s Thesis

4. TITLE AND SUBTITLE DESIGN OF A FINANCIAL MANAGEMENT 5. FUNDING NUMBERS
SYSTEM FOR THE ACADEMIC DEPARTMENTS AT THE NAVAL

POSTGRADUATE SCHOOL
6. AUTHOR(S) Alan E. Pires
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

This thesis examines the requirements and design of a financial management system for the academic
departments at the Naval Postgraduate School. Existing systems are difficult to maintain and/or provide out-of-
date information. A system is needed that is easy to use, easy to maintain, and provides current account status
information so that the academic departments can make intelligent financial decisions.

We examined existing methods and tools for designing and building client/server applications. After
comparing the traditional waterfall approach to the rapid prototyping approach, we elected to use rapid prototyping
in order to develop the system quickly and to help the users determine their own requirements. We decided to use
the Powersoft Portfolio tool set from Powersoft Corporation because it is scalable, transportable, affordable, and
compliant with the Open Database Connectivity standard.

The result of this thesis is a prototype financial management system that users have found easy to use and
maintain. The system provides summary and detail information on departmental financial accounts, to include
balances and expenditures in the funding categories of faculty and support labor, equipment, travel, and contracts.

14. SUBJECT TERMS Accounting System, Database, Client/Server Application, Rapid 15. NUMBER OF
Prototyping, PAGES 177
’ 16. PRICE CODE
17. SECURITY CLASSIFICA- { 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFICA- |20. LIMITATION OF
TION OF REPORT CATION OF THIS PAGE TION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 235-18 298-102

Yy -

|\DTIC QUALTEY DICPRUTED 3

11

Approved for public release; distribution is unlimited.

DESIGN OF A FINANCIAL MANAGEMENT SYSTEM FOR THE
ACADEMIC DEPARTMENTS AT THE
NAVAL POSTGRADUATE SCHOOL

Alan E. Pires
B.S., United States Military Academy, 1980
Submitted in partial fulfillment
of the requirements for the degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1997

Author: J/C% s /(AA:A

Alan E. Pires

Approved by: W/

C. Thoma@fé Thesis Advisor

ol

\. John A. Daley, Second Reader

U

Ted Lewis, Chairman
Department of Computer Science

ii

iv

ABSTRACT

This thesis examines the requirements and design of a financial management
system for the academic departments at the Naval Postgraduate School. Existing
systems are difficult to maintain and/or provide out-of-date information. A system
is needed that is easy to use, easy to maintain, and provides current account status
information so that the academic departments can make intelligent financial decisions.

We examined existing methods and tools for designing and building
client/server applications. After comparing the traditional waterfall approach to the
rapid prototyping approach, we elected to use rapid prototyping in order to develop
the system quickly and to help the users determine their own requirements. We
decided to use the Powersoft Portfolio tool set from Powersoft Corporation because
it is scalable, transportable, affordable, and compliant with the Open Database
Connectivity standard.

The result of this thesis is a prototype financial management system that users
have found easy to use and maintain. The system provides summary and detail
information on departmental financial accounts, to include balances and expenditures
in the funding categories of faculty and support labor, equipment, travel, and

contracts.

vi

L INTRODUCTION 1
A BACKGROUND e 1

B. REVIEW OF EXISTING SYSTEMS 1

1. Operations Research Department System 1

2. Computer Science Department System 2

II. SYSTEM REQUIREMENTS ANDDESIGN 5
A PROJECT SCHEDULE 5

B. SYSTEM REQUIREMENTS 5

1. General Requirements 5

2. Read Access (Queries) 6

3. Write Access (Updates) 6

4. Report Generation 7

C SELECTION OF SOFTWARETOOLS 7

D. DATABASEDESIGN 8

1. The Enhanced Entity Relationship Diagram 8

2. The Physical DataModel 8

1. FINANCIAL MANAGEMENT SYSTEM 13
A CLIENT/SERVER PROCESSING DECISION 13

TABLE OF CONTENTS

vii

1. Database (Back-end) Processing

2. Application (Front-end) Processing

B. APPLICATION DEVELOPMENT

1. Background

2. Implementation

a. Financial Management System Modules

b. Staff Module Components

C. Rapid Application Development

C. APPLICATION DEPLOYMENT

IVo ANALYSIS o

A TOOLS . .

L. Database Modeling

a. StrongPoints

b. WeakPoints

2. Application Development

a. Strong Points

b. WeakPoints

B. DATABASE SERVER

1. Strong Points

2. Weak Points

C. PROTOTYPE
viii

1. StrongPoints 36 .

2. Weak Points 36

V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY 41
A CONCLUSIONS 41

B. RECOMMENDATIONS FOR FUTURE STUDY 42

LIST OF REFERENCES e 45
APPENDIX A. PROJECTSCHEDULE i, 47
APPENDIX B. FMS DATABASE TRIGGERS 49
APPENDIX C. FMS DATABASE STORED PROCEDURES 71
APPENDIX D. FMS POWERBUILDER LIBRARY OBJECT LISTING 77
APPENDIX E. FMS APPMODELERREPORT 79
INITIAL DISTRIBUTION LIST i 163

ix

ACKNOWLEDGEMENTS

I would like to thank Dr. C. Thomas Wu for his continual support, guidance,
patience, and sense of humor during this project. I would also like to thank LCDR John A.
Daley for his help and support in editing.

I also wish to thank the Chairman of the Operations Research Department, CAPT
Frank Petho, and my supervisor, Alan Jones, for their support. Without their support, this
work would not have been possible. I also wish to express my gratitude to the staff of the
Operations Research Department who tested the system and provided invaluable input for its
design and development and to my co-workers who provided encouragement and support.

I am very grateful to my parents for their support and faith in me. Their positive
attitude and encouragement have always been a source of inspiration. Most importantly, I
am indebted to my wife, Kristine, and my daughters, Jessica and Monica, for their constant

love, patience, and understanding during the work involved in this thesis project.

xi

xil

I. INTRODUCTION

A. BACKGROUND

The academic departments of the Naval Postgraduate School need a method to
provide current status information for their numerous financial accounts. Reports from the
Comptroller are quarterly and are frequently out-of-date when received. Without up-to-date
information, the departments cannot make intelligent financial decisions. Although solutions
to this problem have been developed, they do not provide a complete or efficient solution to
the problem. This thesis determines the requirements and design for a financial management
system for the academic departments.
B. REVIEW OF EXISTING SYSTEMS

1. Operations Research Department System

The Operations Research Department has a system that was developed using Borland
Paradox for DOS. It was loosely based on a system that had been developed for the
Administrative Science Department (now known as the Systems Management Department)
using dBase IV [Ref 1, 2, 3, 4, 5]. Neither the Administrative Science Department’s
database nor the Operations Research Department’s database was designed using proper
database design techniques, i.e., no data modeling was done such as through the use of
Entity-Relationship (ER) diagrams or Enhanced Entity-Relationship (EER) diagrams [Ref.
6]. The Administrative Science Department’s system was not easy to maintain and not easily

transportable to other departments.

The Operations Research Department’s system, named the “Paradox-based Financial
Management Information System (PFMIS), allowed the inputting of account, labor,
equipment, and travel information but only calculated the balance of accounts for the labor
category. The version of Paradox used does not support storage of embedded code, such as
Structured Query Language (SQL) code, in the database. Instead, scripts written in the
“Paradox Application Language” have to be manually executed to perform calculations such
as those needed to determine the balance of an account. More sophisticated databases allow
embedded code, known as triggers and stored procedures, which can cause calculations or
other actions to happen automatically upon insertion, modification, or deletion of data in the
database.

2. Computer Science Department System

The Computer Science Department system is based on the Microsoft Excel
spreadsheet. As such, it does not have many of the important features of a database system.
For example, it cannot check that the user is inputting valid data, it cannot provide various
levels of security to the data such as allowing some users read-only access and other users
read-write access, it cannot provide transaction tracking and the ability to cancel transactions,
it cannot provide the necessary protection to data that would allow simultaneous inputting
of data by multiple users, and it cannot easily provide on-line access to individual professors
of the status of their accounts. To provide account status information to the professors, the
individual who inputs the data into Excel runs a program that converts a spreadsheet
containing summary status information into a HyperText Markup Language (HTML)

document. The HTML document is then posted on a World Wide Web page where the

professor can view it. A database system, on the other hand, would allow the professors to
access the database at any time to view the status of an account or the database system could
be set to automatically update a Web page whenever new data was entered. In short, the
Computer Science Department is attempting to solve a database problem using a spreadsheet.

This thesis uses an approach that will use modern design techniques to provide a

robust financial accounting system that is easy to use and maintain.

II. SYSTEM REQUIREMENTS AND DESIGN

A. PROJECT SCHEDULE

The first step in the project was to develop a project schedule. A copy of the schedule
is given in Appendix A. The project was divided into three main phases: a design phase, a
development phase, and a test/debug phase. Each of these phases consisted of a variety of
tasks. It was determined that many of the tasks could be done in parallel. To begin the
project, system requirements were determined and software tools were selected. The
Operations Research Department was selected as the test department for the project.
B. SYSTEM REQUIREMENTS

System requirements were developed by studying the existing system in the
Operations Research Department and by conducting interviews with key personnel in that
department to determine what tasks they needed to perform [Ref 7]. The system
requirements were determined to be as follows.

1. General Requirements

® Track the department’s financial accounts. All type of accounts need to be
tracked, e.g., Reimbursable Research (RR), Direct Research (DR), Direct Teach

(DT), etc.

® Track the total dollar amount of each account, as well as the subcategories that the
funds are broken out to, i.e., faculty labor, support labor, travel, OPTAR, and
contracts.

® Data must be exportable, i.e, the user’ must be able to bring data from the system
into a spreadsheet or other program for manipulation.

® Security down to the “field” level so that only authorized users can read and/or
write fields, records, and tables.

® The “front end” of the system must be compatible with Windows 3.1x, Windows
95, Mac OS, and common variations of the Unix operating system, such as Sun
Solaris.

2. Read Access (Queries)

® Determine the balance in an account broken out into the following subcategories:
faculty labor, support labor, travel, OPTAR, and contracts.

® List all charges against an account and see which charges are obligations (funds
committed but not spent) versus actual expenditures.

3. Write Access (Updates)

® Write access (updates) must be limited to authorized users in the department to
help ensure the accuracy of the database.

® Authorized users should be able to enter information about initial funds in an
account and charges against accounts. Charges against accounts will be in the
subcategories of faculty labor, support labor, travel, OPTAR, and contracts. If
possible, this information should come from other systems, e.g., SACONS
(Standard Automated Contracting System), to avoid duplicate entry of data.

'For these requirements, the term “user” refers to any authorized user of the
system, e.g., a staff member who inputs data, the department chairman, and faculty
members who are the Principle Investigators for accounts.

6

4. Report Generation

® The user should be able to produce the faculty and staff labor certification reports
for each pay period. These reports show the number of hours of labor each week
charged to specific accounts for each employee. The system should include some
calendar functions so that it will automatically account for holidays, etc.

® The system must have the ability to easily produce custom reports such as lists of
accounts and employees, lists of expenditures on accounts, and so on.

C. SELECTION OF SOFTWARE TOOLS
At the same time that the requirements were being developed, software tools to aid in
the design of the database and the development of the application were examined. The

desired features of the tools were:

o Affordable
® Scalable

® An established product. By purchasing an established product, it would more
likely have support available through a variety of sources to include user groups
and third-party books.

® Ease of use. The tools needed to be relatively easy to learn to use.

® Require a minimum of coding. By minimizing coding the resulting system would
be easier to maintain.

® Transportable. In other words, able to implement on an IBM-compatible PC,
Macintosh, or Unix-based system.

® Compliant with the ODBC (Open Database Connectivity) standard developed by
Microsoft. Compliance with this standard would allow the application to interface
with any ODBC compliant database such as Oracle or Sybase SQL Server. This
would prevent the design from being locked in on one product/vendor for
implementation.

The products that were considered included: Powersoft Portfolio, Symantec Enterprise
Developer, Oracle Database Server and Oracle Power Objects, and Borland Delphi. The
decision was made to select Powersoft Portfolio because it provided a database design tool
(S-Designor AppModeler, formerly, StarDesignor), an application development tool
(PowerBuilder Desktop), and a database server (Sybase SOL Anywhere, formerly, Watcom
SOL Server), it met all of the desired features, and it was the most affordable.

D. DATABASE DESIGN

1. The Enhanced Entity Relationship Diagram

After the system requirements had been determined, the database was designed using
an Enhanced Entity-Relationship (EER) diagram [Ref. 6]. The EER diagram, minus the
attributes, is shown in Figure 1. The attributes for each entity and relationship are shown in
Tables 1 and 2 respectively. The EER diagram was developed based on the system
requirements, interviews with users of the system, and desired reports (output) from the
system. The completed EER diagram was used to determine what tables to create, what
attributes to have in each table, and what relationship existed between tables [Ref. 6].

2. The Physical Data Model

The database design tool included with Powersoft Portfolio, S-Designor AppModeler,
could not be used to create EER diagrams. Instead, the user graphically creates database
tables, enters the attributes for each table, and then creates the relationships between tables.
This is what S-Designor AppModeler refers to as the “physical data model.” Once the
physical data model is complete, the user can generate any number of ODBC compliant

databases, such as Oracle, Sybase SQL Anywhere, Microsoft Access, Borland Paradox, etc.

For this project, once the physical data model had been created from the EER diagram, the
physical data model was used as the design for the database. In other words, as the design
was changed over time, the physical data model was updated, not the EER diagram. This was
done for practical reasons. Changes could easily be made to the physical data model using
S-Designor AppModeler. No tool was available to easily change the EER diagram. After
making changes to the physical data model, the database could be modified automatically
using S-Designor AppModeler to generate and execute the SQL code. Making changes to
the EER diagram could not, of course, be used to change the database automatically since S-
Designor AppModeler could not work with the EER diagram. The physical data model is
shown in Figure 2.

The user of S-Desigrnor AppModeler does have to provide some of the intelligence for
modifying the database, i.e., S-Designor AppModeler cannot successfully implement all
modifications to the database. If multiple changes need to be made to the database, the user
might have to enter one change at a time to the physical data model and have S-Designor
AppModeler modify the database after each change to the physical data model in order to
have the changes implemented properly. This is not always the case. It depends on what
changes are being made to the database. For example, if non-key attributes (fields) are being
added to some of the tables, this could be done all at once. If, however, a key attribute was
being added or removed from a table along with other changes to the same table, the changes

would have to be done individually.

Employee

Travel
N M
Charged To
M
M ' N

Account

Charged As

Military
M
M N
M

Other Leave

Requests
OPTAR ltfem
From

N
M

Sponsors

Sponsor

Figure 1. Enhanced Entity Relationship Diagram (Minus Attributes)

10

Table 2

11

. Attributes of Relationships.

|Employee Account Travel Labor Sponsor {Other L eave |Contractor
Employee |ID Code JON TO# PPE Date Name Type Name
SSN Budget Page Date [TO Date A.L. Hours Address [Num Hrs Address
First Name Fund Type Proj Cost Holiday Hrs [Phone Phone
Mi Labor JON Actual Cost S.L. Hours
Last Name MIPR # Trav Start Date |L.W.O.P. Hrs
Base Salary Title
Accel Rate Serial #1
Bidg # Serial #2
Room # Date Recvd
Work Phone Expir Date
Home Phone Init Fac Labor $
Street Addr Init Spt Labor $
City Init OPTAR $
State Init Travel $
Zip Init Contract $
Categories of Employee: L
Facuity Staff Military
Civ Grade Civ Grade Mil Grade
Step Step Service
Table 1. Attributes of Entities.
Requests OPTAR Item From lCharggs IContracts
Doc # Hours l&iﬁ
PO # Overtime Hours {Proj Cost
Proj Cost Actual Cost
Actual Cost
Description
PO Date
Date Recvd
Order Date
Category
ADP Proj #

Phydical Data Model
Project tmg
Mode) ; fme

Author: Alan K. Pirei Versl 1 [1/29/97
PACULYY MILITARY
EMP_ID_SOOR netnull EME_ID_cobhk ‘Dot nun AFONOOR
CIV_GRADR sharfS) null MIL_ORADR ohartk) mall Datoul
srar ehert) nult SSRVICE ahar(d) nud NAME eher(0) nus
BALARY _HISTORY ADDRESG ahar(40) rus
[wvarr) ‘shacia ey onar(16) nus
e RRGR_DATE data T STATR char(2) nus
sbarid) natoul END_CATE “ats ot mudt mrcopz ehurt10) ru
civ.amane peiowbor o BAGE_CALARY desimai(102) not null onm hur(1%) nus
shar ACCELRATE decimai3.) ot mal anar(1) nux
CMP_D _COPE-KMP_B_COBE ANP_D _CONS.
wron_m_cone -
eur_e_cose s ur_m_cont
ACCOUNT
6N
BUGGET_FAGK_DATE
PUND_TYPE
WMPLOYEN LABOR_JON
ERP_D_CODS ahard) prrTy eur_m_cobe raon e
DRPT_COON ohartz) it DATE_RECEIVED
mWr_cobR whart) net nust DXPIR_DATR
N abar(11) nu CONTRACTS, SPON_JO_CODE
FIRST_NAME ol nutt > RIAL_S8
I sharth ran CONYBACY TYPm ahactt) nat el e
LAST_NAME) not nup ey
DA Y deelmekto,2) nul oac. shaerk}
fetar—ioi prowe OV oy CONTRACTOR chee(20) rull
e et — PROJ_COET doalm w122} null
RO ohar(s) nall EMP_D_COBE ~ REQSZETER ACTUAL_COAT deslmal(12.2) null
WORK_FHONE ebar(12) hartia fore WIT_CONT_OTH
HOME_PHONE o oy ot om—son INDIRECT_COST
OTREANT_ADDRESO »l Py [
ey ahar{1E) utt BAL_FAC_LABOR
oTATE charl) o att BAL_GPT_LABOR
arco anani0) BAL_TRAVEL
sroUSE_PRAME shar(18) BAL_OMTAR
CATHOORY ahar RAL_CONT_MiPR
DA’ ate BAL_CONT_IPA
RAL_CONT_O'TH
b (M 4O
QPTAR_REO
hactk} ‘et il
NMP ID CODN shae(4} patnull
ahar(®}
declmal(112) il
COSY dsotmal(t12) null som son
SCRIPTION ahar(S0) nul
chee(15) ull
ohar(t) ull
aeeT_cane-joerr_cone ro, anre nutt
ORDER_DATE aats null
obar vl TRAVEL
chartt) rutt
A RECVD_DATE dats Tl To.pATE P all
rur_m_cosE dats net ouil #ROJ_CORT deoimen10.2) null
AMP_D_CORT ~KMP_D_CONL
WP _PROZ S

OEFARTMENTY

DRFT_GABE shadi) natnull
DOPTNANE ehareo) »sFT_CORD 3\ DEPT_COB nult
CHAIR_CODE ohar(4) null m:

m
LABOR_CHOS

EME_ID CODR

JON

HOURS: teger not mult

OT_MOURE intsger not nul

ToTaL_cHa desimal(12.2) null

FY_GNDNO duts not null

CTHER_LV_TYPE_

"me_cre

natnuit
OT_CAF dootma10.2) nullt
nutt

VR_LABOR_ MRS ntemer
RR_OT_RATH_FACT 4ssimans 4) nwil

C DR_CHGS A
FACULTY ANP_jO_CODE shar(4} |
LABOR_CHGO.PPEDATE dets LABOR_CHGS.HOURS
LABOR_CHO! URE Integer LAROR_CHARPPE_DATE sats
E5 AccounT CTAFF
B wacuLry 5 LABOR_cHus
£ 1anor_cxas
BT_FMT_CHGE 3
STAPP.EMF_ID_CODE charle)
DT _CHa®R LABOR_CHOE.HOURS meger ACCOLNT.LAROI oN
PACDLTY Mr_{D_CODN shar(a) | Camon_cronremoam s § | $7Sr aur o coon Sharte
LAROR_CHAR.FPE_DATE dats STAFE LABOR_CHOS.HOLRS. integer
LABOR_CHE8.HOURS Integer B 1AmoRr_cHas LADO R_CHAR PPE_DATE prhinay
£ ACCOUNT =
2 racuLTY a oT_R_CROD
2 Lamor_cuas ACCOUNT.LABOR_JON ahar(®)
ETAFF EMP_JO_CODE ehar(®)
HOURS integur
LABOR_CHAB.PHPE_DATE date 5
RR_CHOS E AccaunT tnteger
FACULTY.BMP_0_CODE oharid)
ACCOUNT.LABOR_JON onarss) B tasor _cras
LABOR_CHOAPPE_DATR dats
LABOR_CHGSHOURE intager 4 &T_OMN_cHOS
S5 ACCOUNT CTAPF.MMF _JD_CODR charie)
B FACIRTY LABOR_CHG&HOURR nteger
7 LAROR_CHAS LABOR_CHG B.FPE_DATE date
B erar

\B tamow_cHaa

Figure 2. Physical Data Model

12

III. FINANCIAL MANAGEMENT SYSTEM

A. CLIENT/SERVER PROCESSING DECISION

We (my thesis advisor and I) decided to call the system the “Financial Management
System” (FMS). Once the design of the Financial Management System database was
complete, the development phase began. The solution being implementing utilized the
“client/server” model of computing [Ref. 8] where some of the computing (processing) is
done by the database residing on a “server” (a PC running the database server, in our case)
and some of the computing is done by the application which runs on the “client” machine
(again a PC in our case). A key part of the development phase was determining what would
be done by the database (“back-end”), and what would be done by the application (“front-
end”).

1. Database (Back-end) Processing

The database (back-end) handles the referential integrity constraints using triggers and
it handles the calculation of the balance of the accounts using stored procedures. The reason
for handling the referential integrity constraints using triggers is that S-Designor AppModeler
automatically generated most of the triggeré to enforce referential integrity thus having the
tool do most of the work and making the database easier to maintain. The reason for
calculating the balance of the accounts using stored procedures is so that the procedure would
have to be written only once. It can be called by any trigger that would affect the balance of

an account. Otherwise the code to calculate the balance of an account would have had to be

13

placed in every trigger that affects the balance of an account. A listing of the triggers is given
in Appendix B, and a listing of the stored procedures is given in Appendix C.

Handling “referential integrity constraints” refers to ensuring the consistency of the
data. In a relational database, a parent-child relationship can exist between tables. With a
parent-child relationship, one or more records in the “child” table can refer to a record in the
“parent” table. For example, in the FMS database there is a “parent” table called
“DEPARTMENT” that contains information about academic departments such as the
department code, department name, etc. A “child” table of DEPARTMENT is the table
called “EMPLOYEE” which contains information about employees to include the department
code of the department they belong to. The referential integrity constraint triggers ma
database ensure that, for example, a record in the DEPARTMENT table cannot be deleted
if EMPLOYEE records still exist with that department code (i.e., there are one or more
records in the “child” EMPLOYEE table which reference the record to be deleted in the
“parent” DEPARTMENT table). Figure 3 shows the attributes of the EMPLOYEE and
DEPARTMENT tables and the arrow in the Figure from the attribute DEPT_CODE in the
EMPLOYEE table to the attribute by the same name in the DEPARTMENT table illustrates
the reference.

These integrity constraint “triggers” are Structured Query Language (SQL) code [Ref.
6] that are automatically executed upon occurrence of an event. The events that cause
triggers to executer (“fire”) are inserting, updating, and deleting of records. Triggers can be
set to occur either before or after each of these events. S-Designor AppModeler

automatically creates integrity constraints triggers for tables that have parent-child

14

relationships. The tasks performed by the triggers automatically created by S-Designor
AppModeler include:

® The insert triggers ensure that a “parent” record exists (in the parent table) for
every record inserted in a “child” table. If the parent record does not exist, the
trigger does not allow the child record to be inserted.

e Ifthe parent-child relationship is set to “delete prohibit,” delete triggers will not
allow the deletion of a “parent” record if a “child” record still exists. However, if
the relationship between a parent and child table has been set to “cascade” delete,
the delete triggers will automatically delete child records if a parent record is
deleted.

® The update triggers ensure that the field of a parent record which links it to a child
record cannot be changed unless the trigger is set to automatically change the
corresponding field in the child record.

The stored procedures which calculate the balance of each account are also SQL code.
These stored procedures are called by triggers. When an event occurs that would change the
balance of an account, such as the insertion of a travel record (i.e., a travel expense), the
trigger causes the stored procedure to execute that calculates the travel balance of the
account to be charged.

2. Application (Front-end) Processing

The application handles data validation. In other words, it only allows the user to enter
data which meets data integrity constraints. For example, the application will not allow the
user to enter a negative number for the number of days an individual was on travel. Of course

the application cannot stop the user from entering incorrect data. For example, the user could

enter that an individual was on travel for five days when they were actually on travel for three

15

days. The application would not catch the incorrect entry because five is in the range of valid
numbers allowed to be entered in the field.
B. APPLICATION DEVELOPMENT
1. Background
As stated previously, a product called PowerBuilder Desktop was used to develop the
application (front-end) of the FMS. PowerBuilder is a graphical application development tool
for developing client/server applications that access databases. PowerBuilder provides pre-
made standard window controls such as buttons, radiobuttons, checkboxes, dropdown
listboxes, etc., to minimize the amount of coding that needs to be done by the developer. It
also provides a scripting language with built-in functions which also help to minimize coding.
Typically scripts are executed when an event occurs such as when a user clicks on a button.
A PowerBuilder application is made up of objects such as windows and menus. Objects
are stored in PowerBuilder libraries and retrieved from these libraries when the application
is run. Some of the types of PowerBuilder objects are:
e Application C)bject: the entry point into an application which defines application-
level behavior such as what the default text font is and what processing should be
done when the application begins or ends.

e Window Objects: the interface between the application and the user. They request
information and display information.

® DataWindow Objects: used for retrieving and manipulating data from a relational
database or other source such as a spreadsheet. It also determines the style of
presentation of data such as tabular or freeform. Output from the database such
as reports are retrieved and displayed using DataWindow objects.

® Menus: provides the user of the application with a list of choices (actions) to
select from such as listing reports that can be produced.

16

2.

Global Functions: independent objects that perform general-purpose processing
such as string handling.

Queries: a SQL statement that is used to retrieve data from a relational database
and saved with a name so that it can be reused. Normally they provide data for a
DataWindow object.

Structures: a collection of one or more related variables of possibly different data
types grouped under a single name. This corresponds to the data structure called
a “record” in Pascal and other programming languages. Structures allow the
developer to refer to a set of related items as a single unit, rather than having to
refer to multiple items.

User Objects: an application feature defined by the user so that it can be reused
in one or more applications.

Libraries: as stated previously, PowerBuilder libraries are used to store objects.
Applications retrieve the objects from the libraries so libraries can be shared by
multiple applications.

Projects: packages the application for execution by the application user(s). The

application can be packaged as a stand-alone executable or as an executable that
links to PowerBuilder dynamic libraries at execution time.

Implementation
a. Financial Management System Modules

The FMS, when complete, will consist of three modules (projects, in

PowerBuilder terminology) -- a staff module, a faculty module, and a chairman module. The
purpose of the staff module is to provide the means for the academic department’s
administrative staff to input data into the system and produce reports. The purpose of the
faculty module is provide the means for the academic department’s faculty to check the status
of the research accounts for which they are assigned as the principal investigator. The

purpose of the chairman module is provide the means for the academic department’s chairman

17

to check the status of all of the department’s accounts and to perform planning and other
accounting functions unique to the department chair. The staff module was developed as the
prototype system for this thesis research project. The faculty module is developed but will

not be discussed in this thesis.

b. Staff Module Components

The staff module of the FMS revolves around two main components as reflected
by the majority of window objects used in the module. These window objects are employee
related windows and account related windows. For both employees and accounts, there are
list windows for providing a listing of all records with a minimum of attributes shown, detail
windows for showing all of the attributes of one record, and search windows for searching
for a specified employee or account record. From the employee detail window, the user can
add or modify an employee record. (Note: employee records are normally not deleted. Ifan
individual ceases to be a Naval Postgraduate School employee for whatever reason, an
employment termination date attribute is filled in. If an employee record needs to be deleted
because it was added in error, the staff member who made the entry asks the database
administrétor to delete the record.)

A screen shot of the employee detail window is shown in Figure 4. The employee
detail window shows the accounts (if any) the employee is the principal investigator for.
Every research account is assigned one or more principal investigators who are responsible
for overseeing the research and authorizing the expenditure of funds in the research account

in support of the research. Funding for the account is broken out into the following

18

categories: faculty labor, support labor, OPTAR (equipment), travel, and contracts (broken
out as MIPR, IPA, and other contracts).

The account detail window displays details about the account such as the
expiration date of the account, the account sponsor, and the initial and current balance of the
account in each of the funding categories. A screen shot of the account detail window is
shown in Figure 5.

As can be seen from Figure 5, there is a tab for each general funding category of
the account. By clicking on a tab, the user can display more details about expenditures in that
category. Example screen shots of expenditures for the labor, OPTAR, and travel funding
categories of an account are shown in Figures 6, 7, and 8, respectively. When the user (staff
member) clicks on a funding category tab, she can then add, modify, or delete records of
expenditures for that funding category of the displayed account.

The PowerBuilder objects used by the staff module are stored in seven
PowerBuilder libraries. The libraries are:

® fms main.pbl. This object contains the main objects for the FMS staff module
such as the main menu, the main window, the password window for logging in to
the system, the “about” window which gives version and authorship information
about FMS, and the toolbar configuration window which allows the user to select
where to place the toolbar (sometimes known as a buttonbar). The toolbar allows
the user to readily access employee, account and other windows by clicking on the
buttons on the toolbar.

® fms emp.pbl. This object contains employee related objects such as the employee

detail window, the employee list window, the employee search window, and an
employee list DataWindow for printing a list of employees.

19

® fins acct.pbl This object contains account related objects such as DataWindows
for labor, OPTAR, travel, and contract expenditure listings for an account. These
objects are shared by the faculty module of the FMS.

® fins acc2.pbl. This object contains account related objects used solely by the staff
module of the FMS such as the account list window, the account detail window,
and the account search window.

® fins_mntpbl. This object contains maintenance related objects such as windows
and DataWindows for adding, modifying or deleting records of labor, OPTAR,

travel, and contract expenditures and adding, modifying or deleting records of
sponsors of research accounts. These objects are shared by the faculty module of

the FMS.
® fms mnt2.pbl. This object contains maintenance related objects used solely by the
staff module of the FMS such as windows and DataWindows for adding,
modifying, and deleting employee and account records.
® fms rptpbl. This object contains report related objects such as DataWindows for
producing reports on labor, OPTAR, travel, and contract expenditures.
A complete listing of the objects contained in each PowerBuilder library of the
FMS staff module is in Appendix D.
c¢. Rapid Application Development
A methodology that was used in developing the FMS staff module is known as
Rapid Application Development (RAD) [Ref. 9]. This methodology, also known as ‘Rapid
Prototyping,” seeks to speed the development of a system by developing a quick prototype
of the system, demonstrating the prototype to the eventual users of the system for their input,
making changes to the system based on the users input, and repeating the cycle until a
deliverable product is developed [Ref 10, 11]. As we developed the FMS staff module, we

demonstrated it every two to four weeks to the Operations Research Department staff

members who would be using the system. At times, the staff input not only resulted in

20

changes to the design of the application but also to the design of the database. Fortunately,
the tools we were using, S-Designor AppModeler and PowerBuilder Desktop, allowed us to
make changes to the database design relatively easily and with minimal impact on the
application.
C. APPLICATION DEPLOYMENT

Once the FMS staff module prototype was developed to the point of being usable and
with no obvious bugs, it was installed in the Operations Research Department for testing and
debugging. Staff members were given a brief instruction on how to use the system and asked
to use the system in parallel with existing systems to check the accuracy of the FMS. Staff
members were also asked to report in writing all bugs they discovered and to request desired
enhancements to the system in writing. Bug reports were evaluated to determine if an actual
bug existed or whether the problem was due to operator error. If an actual bug existed, it
was fixed and the fix was installed as soon as possible. Enhancement requests were evaluated
to determine if they could reasonably be implemented. If so, the enhancement was made and
installed. If not, the requester was notified why the requested enhancement could not be

made to the system.

21

emp_id_cod
dept_code .
emp_code
ssn
first_name
mi
last_name
base_salary
eff_sal_date
accel_rate : department
:ch;%]_t; o ‘geplt:_code .
. » . ept_name
;v;ﬁ‘g.lﬁ’;qﬂ;:e _ chair_code
street_address
city
state
zipcode
spouse_fname
category
term_date

Figure 3. Parent-child Relationship of Employee and Department Tables

22

- jeoueuly 4o wﬁ: “DIZAOP-IRMION m — .

sy T_m.m E

o zenibeus Ry |
e : -fipeay

|80

-

1190ezv14eaceo'rs - looooo'zsis | zemems | zuoun

_

ewa

e JUNO32Y -

RUIIRE

sm,mmw

. ,q.uwho_asw

™ 00900'2$ [00'E0LS

00°000'sz$ [00'000'0v$ Jooooo'sas | zemes | ABIAY
oo000'zsidoo ot fooooo'zsis | 2e0em | vBAdY
posoi’zs | oy | asowy

.ﬂ._ aauejeg PasA . { uopedofy: | saddx3 m oY
caoy oozevcss | w1 |
S aMoala Adgjes aseg oled _oood

" -@shods

T —_ | s
- socee S Y 7SS o |

1S QTN YA H0sEe] soqy_ | _fmed ¥

swoH . uey tomm_mo
3 Cuy o Bpg
e | _me | g0 ” 4mmow _

- 220

Bp0o - :

noqy siozuodg

da) Sup £3UN0Y .. safiojdwy “siodsy pourg ey LR

dief 3asm “uopeledf. E|

% | o|e|& |84

Ewgwaw juawabeuepy |eoueul{ 4 ﬁ,

Figure 4. Employee Detail Window

23

L4

MOPUIA [[BI9(JUNODY S dAN31

drez ud

- [e1oueul] 4O ﬁ: ...m_m>_._mn.o_m3~oz@ﬂ_ - zeAbeuS [y -

suy 5 “ veys g

— asolg |

T

] , ,
_ w % [ooos fooooovs foosores |ooos fooos

{00 1zc°0013 | ra

Wum ~ ooos fooos’ foowis'ss Jooroettzs [ooos

fooos [Pen

¢ |ooos

_ mmb..%.% ?o.m%..:a _mm.%m;ﬂ!.._mm%%

: _oo.ﬁm.ae.wm wony

(bm.EE:n..w.,” * e ~.m<Eo 008 - ABuuing

AIWOD | HdWMOD | BABIL | dwldO | 1900 PaipUl | 0qe1ds | J0ue 98

] ,, Kewumg

[Kupel sousleg - pasn . peigaoly
[1ely] : (o .
e Jovozr'Lors [oowis'ss |oooootents | S
P RIS 130008 TR [z~) ey

wworss | swenit] sseurf - awo | owd | WAy | owena |

RT3 uonendx3 < pAIY - 8jeq abed. . dosuodg-adip pund. NOMJOGET T NOT.
oreag . v NOLLYZIWILAO TTYDS wozimz__w
) A d {4695, xeppy-Xe100 f# 1UeS . MO | 2n0D

.... ROV - - - | e et

:o.:m::o_:_ 1UNosay peja(BE

neqy siozuody PG dugzug] saunoady »aaac_msu.

.suody | peusgieg W

R o

el lE|e|o|e

HpH Moy voperndd ad

Ew..m;..m wawsbeue y jeoueuly Yo 48

L E:o.uu{;

[#995 13pe6-13005 j# 1BURS _MENO | apod

mmp ?b wﬂ_ . - |e1oueulg mc@: ...Qoa.mu.&m\}ﬁz%wrm: :m,m\.,:mmcm%@.w .ms_wﬁzw.wﬁw
o : e Tl T h : " fpesy
- =
as0|0 A e o § o S .
gselgss o R | wviowd maso | o ss100-ge |
areesis | © {e10] poiag Aed o PR
Cevearvs foo o dos aoom] avao |
| zos8'ss - o jos] Azlaved zawo | ,
,. — seepzes fo o Jes |- nwviord amaso |- 96-A0H60 |
g _ - abseyd wme_tmx,o,mmsor By | “aakoduy _ apon.. . _ paliag Aed -
bcw_m._..m —ﬁﬁfoo SRt ~ Hyldo dogey. . Aewuwng ” 10g87
v-.,..%..:..:.. - oueen ..._m.mD | v.ot.moo__d.
PO seteroes rosezess [ovseriies |
S| PPV AUYIWINS 139008 TR0 FiEEp . Jeuwsy
3B ezt | swsert | seomtif o gaviod Joowma o mommy | masmu|
| BE= uojeadxy - pasy 8jeq abed losuodg, adAl pungd - NOFJogeT] NOP
CFiiees - NOILYZINILHO 39S 30Uy §3IL -
‘ ‘ .
I

L___ R}

UOHEUIIO0JU| JUNCIDY [IE1aQ]

F10z80dg

190y g

ayunosdy | safojduy

©

sunday

pansd frd

"deH moys vopersdd 93 |

wo)sd s Juawalivuey jeroueul mcfu

25

Figure 6. Account Detail Window Showing Labor Expenses

9z
sosuadx YV 1O Sumoys mopuip [re1o(Junosdy "/ ansny

Wd 2621 (gl ~ fetoueury 4o I | ...o_@,__%.@_m}@z@m zenibeus [y | Wi jeis e
. e e e e e , fpeay
] _ T
fesers |- s} ogsucfvo nagus - 010vd S) ZELINNO Fwadr| (rZI00ug
i |GGG S| 1096-H0J¥D LIGH ¥-0D 12 ALNOIINIFOHNOS S 7 LI0DNS
67’ 1S H| - 1096-40f 0 1a3uof OW TYNNIINI QLS TvNa ¥3unod (re000xHes
8sz'1$ S| 10s6-uofrd LIa3uof N1 TdiY S3ANTOND SNd Tdww] rr2000xad
#1Z8 S| 1096-40f 72 1AM 431SINE JONd 0t DISYE TYNSIAf _ FP900DNg
e 6668 S 1096-H0] 7. LIAFMY WODLWAA HO4 3AYNOdN OKSOd TFS00DHIH
9120 1} g9 . . ,um!_ - 1096-40 70 La2dy 1 30EN0S3M LN NIM LIOSONOI - 11¥00D48
- pel R ey %,.: #dav | #od.] ~ “uoduaseq S
y 1 peauos . jaaed) | oy B i . UY 14O
YL dO - Tu 0D - -[3ABIL _.m,.qE.o. Pl NS 1 e)
A aousjeg pasn ... peRdoly . il o s m_
Ajpo oy .) o DR :
PO 1woeo'zts | ezaosees fooooowsy [mm_>o>xmqo o
AUYIAWNS 130ana ,:_.Em:o o R - YLy
, 352_ seouy | gasgn | asno | wd | asnww | aenm |
s uofiendxs - pasy’ mﬂmo abed . - .omzoam maa‘n_::m Zo?o,nw,.f z.o.w,.
5 ey -~ _ _ SAS ISNIIIQ TSI zm:ﬁ:_..T_E
: |#fas _Ea:@q Bmmo_ 9pD. ...E.
e JUNIO DD - e E

woqy | of1eciedg PIY MG - aswoco sjunoady | oeandojdug ,.u.:.onom podgdeg | g
& | @ nle|e |\ | @
: - . " dpE ™oy uopeiedp 9
walsdg Juawabeue y je1oueuy 4o

" [eroueuly :D%:.....062_%.2@362E!%.. T zepibeus g _ e suy B T.Ewﬁm

~_fipeey
as0|0
sng. foozeo'ts foozeois | s | seewti| vanocorsetczion|
song loooors foossss ™}z | omsyit] wvaoosrsizzzew |
..... _ CLoagearay ~ 1S0D PY | 1800383 * sAeQR _m«mo >2: ROL
ToEEoQ " |aABIL _ HVldO dode7 Adewwng e lone}
saueleg . - pasM ‘peoo)y.
. teeroes eoovs'vs |ovoor'ses | |
AUVINWNG 139008 TIVHIAO . [R5~ LR | dswiay
w wit | gesat | swmn | _oval | W | neamy | naama] -
i CUuolenexd - pAXd aleqg.efied - Josuods adil pund NOPiogen NOP
| [oomes . | . . wos-rjanL
B I ‘ Ba - Yepuss NE@o b epoo.)
1 ooy [¥ _sservanne [mes _nmo | oo —

UOHRIOJU| 1UNDADY JIRIB(5]

Mgy 2wsuodg - | woy sug dw3 vy wE:Ouu{:. _swsfoldwy | zuodsy | pousgdty W
P | E | % | 0| O|E A

del moyS " uoneisdd 9

wa)sd g yuawabruey |eisueul mci.mw,m.

Figure 8. Account Detail Window Showing Travel Expenses
27

28

IV. ANALYSIS

A. TOOLS

1. Database Modeling

The database modeling tool used, S-Designor AppModeler from Powersoft
Corporation, allows the user to create a graphical representation of some of the components
of a relational database. This includes tables, table attributes, relationships between tables,
and views. These components are stored in what S-Designor AppModeler refers to as the
“physical data model.” Other components of the relational database, such as indexes,
triggers, and stored procedures, can be created as part of the physical data model using S-
Designor AppModeler but are not shown in the graphical representation.

Overall, we found S-Designor AppModeler (hereafter referred to as AppModeler) to
be a very useful database modeling tool. As with any software tool, it has its strong points
and weak points.

a. Strong Points
® Overall ease of use. The user interface is fairly simple and straightforward. We
were able to start using it with only a minimal amount of reading of the User’s
Guide and the on-line help. Sample physical data models were provided which
also helped with learning how to use AppModeler. For preparing the graphical
portion of the physical data model, several AppModeler tools are available in a tool
palette: a table tool, a reference tool (for indicating the relationship between
tables), a view tool, and so on. These tools in the tool palette make it simple for
the user to create the tables, relationships, and views that are part of a database.

A screen shot of AppModeler with the tool palette and the FMS physical data
model is shown in Figure 9.

29

e Automatic generation of the database. Once the user has completed a physical

data model, with the click of the mouse, the database can be generated. The user
has the option of having AppModeler generate the database, or generate an SQL
script which can be executed separately to generate the database. Before the
database or SQL script are generated, AppModeler automatically checks the model
for correctness. The user can generate the database for any of a number of target
databases such as Sybase SOL Anywhere and Oracle. Many other options are
available. A screen shot of the AppModeler database generation screen is shown

in Figure 10.

Automatic modification of the database. Automatic modification of the database
is both a strong point and a weak point (see below). To modify the database, the
user archives the current (prior to the changes) physical data model, makes
changes to the physical data model, and then selects the Modify Database
command. The user can choose to modify all tables or specify which tables to
modify, modify all indexes or specify which indexes to modify, and modify all
triggers and procedures or specify which triggers and procedures to modify. As
with the automatic generation of the database, the user can choose to modify the
database directly or to have an SQL script generated which can be executed
separately to modify the database. It was very useful to select the option to
generate the SQL script to check over what AppModeler was going to do to
modify the database. Ifit appeared that the script would accomplish the intended
modification, then the option to directly modify the database was selected. A
screen shot of the AppModeler database modification screen is shown in Figure 11.

Automatic generation of indexes. Indexes provide an ordered list of the records
of a table based on a key field. There are two types of key fields, primary and
foreign. A primary key consists of one or more fields (attributes) that uniquely
identify a record in a table. A foreign key is a field that depends on and migrates
from a primary key in another table. With a few mouse clicks, the database
indexes for key fields (both primary and foreign) can be automatically generated
or, after modification of the database, regenerated.

Ease of creating relationships between tables. As mentioned previously, there is
a “reference” tool in the AppModeler tool palette for creating relationships
between tables. The user clicks on the Reference tool in the tool palette, clicks on
the child table and drags the reference to the parent table. If the foreign key in the
child table has the same name as the primary key in the parent table, those fields
are automatically selected for the relationship. The user can specify which fields
to use for the relationship if the correct fields are not automatically selected.

Automatic generation of referential integrity constraint triggers. AppModeler
automatically created referential integrity constraint triggers for tables with parent-

30

child relationships. In every case, the triggers automatically generated by
AppModeler worked correctly.

Ease of creating and modifying triggers and stored procedures. In order to have
the balance of the various funding categories of accounts calculated automatically,
we had to create and modify some triggers and stored procedures. AppModeler
made this task relatively easy by providing the means to list all triggers and
procedures, listing triggers by table, and allowing the user to edit them with a
simple but adequate text editor. As mentioned previously, once the user had
created or modified the trigger or stored procedure, he could automatically add it
to the database or modify it in the database using the automatic modification
feature of AppModeler.

Automatic documentation (report) generation. AppModeler can automatically
generate three types of reports: a full report which contains all main model items,
a standard report which contains physical data model graphics, and all table-
dependent items, and a list report which contains a single title item and all list-type
items. User-defined reports can also be created. The user can print the report or
save it in “Rich Text Format” to a file. Additionally, the user can choose to print
the physical data model graph in color or black and white and can have
AppModeler automatically scale the graph so that it fits on one page (an extremely
useful feature). Part of the AppModeler full report (database schema information)
for the FMS physical data model is given in Appendix E.

b. Weak Points

Automatic modification of the database. If too many changes were attempted at
once, AppModeler did not have the intelligence to perform them in an order that
would achieve the desired results and thus end up with a physical data model that
did not match the actual database. That is why it is extremely helpful for the user
to first have AppModeler generate the SQL script and to check the script before
having AppModeler directly modify the database. The other problem observed
was that frequently AppModeler could not perform modification of a key field
because it did not have the intelligence to perform the necessary steps. Modifying
a key field usually had to be done manually in several steps. First, the data from
the table had to be exported to a comma-delimited file. Then the user had to
delete any relationships with the table and the table itself and use the automatic
modification feature to implement this on the database. Then the user had to
recreate the table with the desired change to the key field and recreate the
relationships for that table and again use the automatic modification feature to
implement the changes on the database. Finally, the user had to import the data

31

from the comma-delimited file back into the table. On occasion the user had to
first manipulate the contents of the comma-delimited file (using a spreadsheet or
other program) to get it into a form that would be accepted by the modified table
before importing it into the modified table. In other words, the automatic
modification feature was, at times, dangerous and/or time-consuming.

® Graphical representation of the database. This was a weakness in the sense that
AppModeler could not work with an EER diagram. A preferable method is to
create and modify an EER diagram and have AppModeler generate the table,
attributes, relationships, and so on, from that.

® Automatic generation of relationships. The automatic generation of relationships
(references) in AppModeler created a relationship between every primary and
foreign key with the same name. In our case, this created many relationships that

were not intended and so we found it far easier to manually create the desired
relationships using the Reference tool in the tool palette.

2. Application Development
The application development tool used was PowerBuilder Desktop from Powersoft
Corporation. PowerBuilder is a tool for developing graphical client/server applications that
access relational databases. As such it attempts to minimize the amount of coding done by
the developer in order to make it easier and faster to develop and maintain the application.
Overall, we found that PowerBuilder did live up to its stated purpose of easing the
development and maintenance of an application. Some of its strong and weak points are
listed here.
a. Strong Points
® Pre-made standard window controls. PowerBuilder made it easy to design menus
and other standard windowing controls and thus saved a great deal of coding.
® Ability of multiple applications to share libraries. Some of the libraries were used

for multiple modules (projects) of the FMS, which made it much quicker to
develop the modules and maintain them.

32

® Reusable objects. PowerBuilder objects we created, such as DataWindows, were
saved in libraries and reused within a module (project) and by multiple modules.

® PowerBuilder Painters. Similar to the tool palette of AppModeler, PowerBuilder
had “painters” for creating PowerBuilder objects such as DataWindows,
Applications, Projects, Menus, and so on. These painters provided an easy to use
interface for creating these objects.

® Support. PowerBuilder is a fairly widely used product and consequently there
exists a support forum for it on the computer service called CompuServe. The
support forum is available at no extra charge for CompuServe subscribers and is
made up of users of PowerBuilder (not Powersoft employees). On the occasions
where we ran into problems with PowerBuilder that we could not solve, we posted
a message detailing the problem on the support forum on CompuServe and
received an answer usually within twenty-four hours that solved the problem. This
form of support was important for keeping the cost of the project down since
technical support from Powersoft is not free.

b. Weak Points

® Difficulty in changing fonts and font sizes. For various reasons, the font and/or
font size for some of the windows and reports were changed several times.
Unfortunately there was no means available to make a global change.
Consequently, each text object had to be changed individually, making it a very
tedious and time consuming process.

® Scripting language awkward. The scripting language is not designed logically.
Too many features are ad hoc add-ons.

® The executable is not truly compiled. It requires the application’s dynamic library
files in order to work.

® Inadequate documentation. The manual for PowerBuilder was the smallest of the
manuals for the three programs that made up Powersoft Portfolio. Not only was
it the smallest but it was also the least adequate. We found it necessary to
purchase third-party books about PowerBuilder to supplement the manual.

33

B. DATABASE SERVER

The database server used is Sybase SOL Anywhere. Powersoft Portfolio included a
four-user version of Sybase SQL Anywhere. That means that four individuals can
concurrently be logged in to the database server (users accessing the FMS application are
logged in to the database server). This database server, in previous releases, was know as
Watcom SQOL Server. The dialect of SQL implemented by Sybase SOL Anywhere is Watcom-
SQL. (Note: Every database server implements its own “dialect” of SQL that consist of what
might be called “standard” SQL plus some extensions to it. It is similar to the various
implementations of programming languages such as Pascal, BASIC, FORTRAN, and so on,
by software vendors.) The database server allows a database application to communicate
with a database over a network and it handles the processing done by the database, i.e., the
“back-end” processing of a client/server application. Users must enter a valid user ID and
password to make a connection (log in) to the database server. The Sybase SOL Anywhere
server will run on a variety of platforms including: Novell NetWare, Windows 95, Windows
NT, 0S/2, Windows 3.x, and DOS. No matter what platform that Sybase SOL Anywhere is
running on, it can be accessed by clients operating with different operating systems, such as
DOS, Windows 95, Macintosh, running on different kinds of networks such as Novell
NetWare, Windows NT, and Banyan Vines.

Overall, we were pleased with the Sybase SOL Anywhere database server. Some of its

strong and weak points are listed here.

34

1.

Strong Points

® Runs on multiple platforms. At first we ran the database server on a Novell

NetWare server. During a time period when we were having a problem with the
database server, occurrence of certain events could cause the database server to
crash. When trying to recover the database server from the crash, it would
sometimes cause the Novell server to crash. Because Sybase SOL Anywhere runs
on a variety of platforms, we were able to move it to run on a networked PC
running Windows 95 so that if the database server crashed, it did not affect the
Novell server.

Ease of use. Sybase SOL Anywhere was very easy to start up and administer.

Support. As with PowerBuilder, a support forum is available on CompuServe for
Sybase SOL Anywhere that is free for CompuServe subscribers. Also as with
PowerBuilder, we posted problems we had with Sybase SOL Anywhere on the
forum and received correct solutions usually within twenty-four hours.

Documentation. Powersoft Portfolio contained three manuals for Sybase SOL
Anywhere. These included a Watcom-SQL reference that we made good use of
for writing the stored procedures and triggers for the FMS. These manuals were
also available on-line so the user can easily search for specific topics.

Weak Points

No automatic backup of the database. When the database server is running, the
database files are open. Software for tape backup systems cannot backup files that
are open. We wanted to have regular backups of the database but that meant we
had to shut down the database server at the end of the workday (the tape backup
automatically ran at night) and then start it up again at the beginning of the
workday. It would have been very helpful if the database server could have been
automatically scheduled to start and stop at specified times.

Database server crash caused Novell server crash. As mentioned in the strong
point about Sybase SQL Anywhere running on multiple platforms, for a time we
had a problem with the database server crashing and, in turn, causing the Novell
server it was running on to crash. That was very disruptive to the users of the
Novell server and was totally unsatisfactory. We did receive information via the
forum on CompuServe on how to fix the problem but we decided to move the
database server off the Novell server to a PC just to be safe.

® Inability to handle a query with many outer joins. The event that caused the
database server to crash was the execution of a query with many outer joins. This
problem was a bug that had purportedly been fixed in an earlier release of Sybase
SQL Anywhere but had apparently been reintroduced into the version we were
using. The end result was that the queries had to be rewritten without the outer
joins since Sybase SQL Anywhere could not handle them even though it was
supposed to be able to do so.

C. PROTOTYPE

The FMS prototype was installed in the Operations Research Department for testing
and debugging in September 1996. As with any new system, many bugs have been
discovered and a variety of enhancements have been requested but overall, we believe the
system has been well received. A listing of strong and weak points follow.

1. Strong Points

® Ease of use. The users of the FMS were provided with very brief instructions on
how to log in to the application and do a few simple tasks. They have been able
to effectively use the system without any additional instruction.

® Maintainability. We have been able to make changes to the system to fix bugs and
to implement enhancement requests with relative ease. Bugs are usually fixed
within a few hours. Simple enhancement requests have also been completed within
a few hours but the more complex enhancement requests (ones that involved a
design change) have taken a couple of days to implement (lapsed time -- the actual
work took no more than a day per added feature). The ease of maintainability is
due in large part to the software tools we have been using as discussed earlier in

this chapter.

2. Weak Points

e Error messages. Due to a lack of time, we have not prepared error messages for
all of the situations that users can cause errors. In situations where the FMS does
not trap errors and provide an error message, error messages are generated by the

36

Sybase SOL Anywhere database server. Probably the most frequent error the user
makes is to attempt an action that violates referential integrity. The error messages
produced by the database server in these (and all other) situations are not
comprehensible to the ordinary user. Instead, the error messages confuse the user
and discourage him from using the system. We are correcting this deficiency as
time permits.

Lack of user generated reports. We have not provided the user with a means to
generate reports of his own design. The complexities involved in providing such
a capability to the user dictate that if it is implemented, it will provide a fairly
rudimentary report generation capability. It may be possible, however, to train the
users to utilize a Powersoft product called InfoModeler to produce reports. One
of the purposes of InfoModeler is to provide an easy means for end-users to
produce reports from a Sybase SOL Anywhere database.

37

L |

8¢
pake[dsiq o119[ed [00.L Y} YUM 42[apojyddy "¢ 34n3

1" 12poK Wad {8

g @

| o fue ol [i2 | 2 [O [

[[Aelr RER% B R

doFf MOPUIFR - MalR

fewiog obueny af -asefeg dieuonag- ¥pF celd
.vn__:m_uicn_ 10) nc.u_muo 1pppowddy S:m_woc-mmmm

wvsoe [k _@wm_._?u mc__o_uxm?«; R s —dy _o:m_»un-mm%.m_: U ZenIBRUG S T_m_mﬁm

duof gielavan

T Te a— . w dey - _ jpouey _wwmm_wmv &Mmbu

u3Uaa aALWY

-

ERITIN g e e s s e : G e e ,
HOrTe0ay L MBIA 99T A
2dALTANNA T & Fa W
ovdL30ana 1 . : . - 3
NOT B : uune3 uo M:UEEOU L | i : m:_m> hegeg l_ g
1 - ajgerue a7 2 . LT s 843 A W
AT R 7 saxapurlsyin h._ o -fay ajews)jy. Af m
sglAdol] [. ¥epul gy aRwialy 1 _Ii Auba- 1P Af B
wapurdoig _J Aspuldajubilsiog |} - oy ublelog af
3|99} .no_o e xmnc&ux amemi o4 o da dlpuiyg L, 4318
sseqep doiq | e agmesa o | SR ,
al L -
o mom%o_n_ﬂ nc_o -t . - SRELE L.] o
e e . e um.&mzmm aq oy s1epIn - ""”“ M“ “@

nnu3eu {j

;.wm_nm_, 4

AppModeler Database Generat

*mco_ﬁo v :o;m.w:mm vwwmnﬂwo :

si_HOVd| 008

_ww.won_m_om. o eueu By

N wzu.. Bued mwmnmmo_

Figure 10.

0¥ qam wooaje H 10§ siajauieied

T E___,_ul.mmm_aﬁvzw @x R BEET

v ST diaf MOPUIAR | MaIA Hme_om omsm__.q To% ummﬁm_mo awco:u_n_ w3 o_i

014

1 24n3ig

IPOJA 9seqRIR(La]apoNddy

B0l

M UO

mopur

_m_ums,.m_ - Buniojdx3 e a

sy SEE :.n¢__c:m_aun.m@wm__w T mmémm:wwﬁ,_:m.wﬁm

|

r AWYN

wIUIA LV
ERNIN]
NOr~y0oav

FdALTaNNA

ovd4” 13948

4
ANOHd
q03diZ
ERCAR

M LED
SIHQIY

| HOdS

NP

_ CdBH: . “ _mocmm._ “ ,%mmsmn Apow ‘ 1diios ayRIsusY)
sajqey diviodusay doig Af- coz@o:ﬁo& MR A S
o . : _aneanelag A
. Y3
. SBRIpUL 1IN0 A T ey mz.y.mc@_d. 2
o fonaseumyy | [T Aubawi oaq pf
rg L ey ubisioy | : foxublaing Af
- T . Eia e . ' ! 4315
140 day flewng | “ Ay dleuling Af Elo m.m_>_u
uoneoipow BAIT _§ uONROIPOU K3PU] Af uoneaypoui aige] o | 3T AT dP
. : pajesaual aq oy $I9pIg
- i e : g o —
By f SRV 25 o liny G
)) - e e SOIQR L firujon 7
.”ﬂmnna passag

- _ suondp ~ aseqeie(] FIPoW°

_Ruo 2 2ug Al _.]. jbs oy}

swiHovdf oweig

S &Ewm v.mnﬁﬂma

c.r 18s EoSm\...;._E w.EWEEmm

& @@

ot

V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY

A. CONCLUSIONS

The prototype Financial Management System currently deployed in the Operations
Research Department is nearly a production system which, with some modifications, could
be used as an accounting system for all the academic departments at the Naval Postgraduate
School to track their financial accounts. The prototype has demonstrated that even though
user requirements frequently change, it can be changed to meet new requirements relatively
quickly and easily. Comparing the EER diagram in Figure 1 to the physical data model in
Figure 2, it is obvious that the design of the FMS changed a great deal over the course of this
thesis project. Yet, the majority of changes were implemented within a few a days of the
decision to change the design. This quick turn-around for implementing design changes
would not have been possible if this project had been prepared using only a programming
language such as C++.

The tools used (those contained in Powersoft Portfolio) were an invaluable part of this
project and very inexpensive when compared to some of the other tools on the market. That
is not to say that Powersoft Portfolio is the best client/server application development tool
set available for those on a tight budget. It did, however, meet the needs of this project and
we would recommend it for use by others with similar needs and resources.

Changes and additions need to be made to the FMS. The faculty module has been
developed but it needs to be deployed for testing and debugging. Error conditions in the staff

module need to be trapped and clear error messages displayed when errors occur. An on-line

41

help system needs to be added and the users need to be able to easily produce rudimentary
reports from the data available. These changes and additions can be made to the system
relatively easily using the tools we have available when time permits.
B. RECOMMENDATIONS FOR FUTURE STUDY

The system could be extended to become an automated aid for the academic
departments. By extending the database and the application, the system could be used for
property management, scheduling classes, and managing other databases used by the
departments. This would prevent the same data from being entered multiple times into
separate databases. For example, accountable property is tagged with a minor or plant
property tag and entered into a database with various attributes about each piece of property.
Much of this property is purchased by academic departments from their various accounts and
many of the same attributes about this property are stored in the FMS table called
OPTAR_REQ as are stored in the property database. Since the FMS is a relational database,
it could be made to interface with this property database, i.e., have relationships created with
a modified form of the property database tables. Another relation could be created for
property that was maintained by staff members at the school, such as computer hardware, so
those staff members could keep a record of maintenance performed on the property. Other
existing systems at the Naval Postgraduate School such as SACONS (Standard Automated
Contracting System) could also be made to interface with the FMS to further reduce multiple
entries of the same data and other problems associated with having separate databases that

contain essentially the same information. In fact, these existing systems should also be

42

analyzed for possible changes to maximize the benefits available through the use of

client/server database applications.
A “chairman’s” module still needs to be developed for the FMS to assist the academic

department chairman in planning the expenditure of funds, especially at the beginning of each

fiscal year.

A course information database would be another useful addition to the FMS. It could
be used to relate planned instruction (courses) to the expenditure of funds for supplies and

labor needed to support instruction.

43

T ——

44

10.

11.

LIST OF REFERENCES

Renner, R. B., Information Requirements Analysis: An Application, Master’s Thesis,
Naval Postgraduate School, Monterey, CA, March 1984

Booker, R. L., The AS Financial Reporting System: Some Experience On Prototyping
And User Interaction, Master’s Thesis, Naval Postgraduate School, Monterey, CA,
March 1986

Sexton, T. M., A Property Management System For The Administrative Sciences
Department, Master’s Thesis, Naval Postgraduate School, Monterey, CA, September
1987

Ford, N. S., and Zimmon, N. W., 4 Data-Based Financial Management Information
System (FMIS) For Administrative Sciences Department, Master’s Thesis, Naval
Postgraduate School, Monterey, CA, December 1990

Ditri, T. A., Upgrade And Enhancement Of The A. S. Department Financial
Management Information System; Development Of The FMIS Property Management
Module, Master’s Thesis, Naval Postgraduate School, Monterey, CA, September 1991

Elmasri, R., and Navathe, S., Fundamentals of Database Systems, The
Benjamin/Cummings Publishing Company, Inc., 1989

Lewis, C., and Rieman, J., Task-centered User Interface Design: A Practical
Introduction, not published

Marion, W., Client/Server Strategies: Implementations In The IBM Environment,
McGraw-Hill, Inc., 1994

Shneiderman, B., Designing the User Interface: Strategies for Effective Human-
Computer Interaction, Addison-Wesley Publishing Company, Inc., 1992

Neilsen, J., “The Usability Engineering Life Cycle,” Computer, pp. 12-22, March 1992

Connell, J. L., and Shafer, L. B., Structured Rapid Prototyping: An Evolutionary
Approach to Software Development, Y ourdon Press, 1989

45

46

APPENDIX A. PROJECT SCHEDULE

: A asey] FnquqAea] X aseyg punudofanag v
m : : : A . ST WBpraq

m : areyg SUREM AL ; : :
Aapdute)) $rsayy W - - : :

SRMPOY WEULITEY)
¥ Aoey dopasaq

_ paraar] waysdy 4 B.:wﬂ wepsdy mmss.enm..
) : :

l (ampopy JFers) wapsdg adiyoyoxg Bupjrop dopasacy] i sjoo] 1293y

wapsdy apexdd()eduweyryy

surexdery
g doyeang

m upsaq axypeuyy
y3psa(y szeaxg

HINREE

suanuarmbayy
ssa85y

T U {96, 920 g.%z_g;m.o am_,&w_g_mé—g_ i §_§_._§_%§_§_ 3 _Ez_g_%m_.&;ﬂ $6, 98166, AON| S6, 190
B CoG6T PO v | eaetEd L T 96eTTh | "~ 966110 S m.a:,o ,

_mﬁﬂnmm I mllﬁﬂu

- dief zo_u:_u.m suondg Hm;:o.,_ .__3:_ Ik
:um ZPUd-SHAAYLVA SN L. HY VAL - ssaidx] apnpayog @

47

48

APPENDIX B. FMS DATABASE TRIGGERS

Database name: FMS
DBMS name: Watcom SQL 4.0
Created on: 2/3/97 4:52 PM

% Before insert trigger "tib_account" for table "ACCOUNT"
create trigger tib_account before insert on ACCOUNT
referencing new as new_ins for each row

begin

end

/

[

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "SPONSOR" must exist when inserting a child in "ACCOUNT"
if (new_ins.SPON_ID CODE is not null) then
begin
set found = 0O;
select 1
into found
from dummy
where exists (select 1
from SPONSOR
where SPON_ID_CODE = new_ins.SPON_ID_CODE);
if found <> 1 then
signal user_ defined exception
end if;
end .
end if;

% After insert trigger "tia account” for table "ACCOUNT"

create trigger tia_account after insert on ACCOUNT
referencing new as new_ins for each row
begin

call CALC_BAL CONTRACT(new_ins.JON,'M');

call CALC_BAL_CONTRACT(new_ins.JON,'I');

call CALC_BAL_CONTRACT (new_ins.JON, '0'");

call CALC_BAL_ FAC LABOR(new_ins.JON);

call CALC BAL_SPT LABOR(new_ins.JON);

call CALC BAL OPTAR(new_ins.JON);

call CALC_BAL TRAV(new_ins.JON);

end

/

% Update trigger "tua account" for table "ACCOUNT"
create trigger tua_account after update of INIT_FAC LABOR S,

INIT_SPT_LABOR_S,
INIT_TRAVEL_S,

49

INIT_OPTAR S,
INIT_CONT_MIPR,
INIT_CONT_IPA,
INIT CONT OTH
on ACCOUNT - B
referencing new as new_upd old as old upd for each row
begin
declare user_defined exception exception for SQLSTATE '99999°';
declare found integer;
call CALC_BAL_ CONTRACT (new_upd.JON, 'M');
call CALC BAL_CONTRACT(new_upd.JON,'I");
call CALC_BAL CONTRACT(new_upd.JON,'0’);
call CALC_BAL_FAC LABOR(new_upd.JON);
call CALC_BAL_SPT_ LABOR(new_upd.JON);
call CALC_BAL_OPTAR(new_upd.JON) ;
call CALC_BAL_TRAV(new_upd.JON);
end

/

% Before insert trigger "tib_adp proj_info" for table "ADP_PROJ_INFO"
create trigger tib_adp proj_info before insert on ADP_PROJ_INFO
referencing new as new_ins for each row
begin
declare user_defined_exception exception for SQLSTATE '99999"';
declare found integer;

% Parent "DEPARTMENT" must exist when inserting a child
"ADP_PROJ_INFO"
if (new_ins.DEPT_CODE is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from DEPARTMENT
where DEPT CODE = new_ins.DEPT_CODE);
if found <> 1 then
signal user_ defined_exception
end if;
end
end if;
% Parent "EMPLOYEE" must exist when inserting a child

"ADP_PROJ_INFO"
if (new_ins.PROJ_MGR CODE is not null) then
begin
set found = 0O;
select 1
into found
from dummy
where exists (select 1

50

in

in

from EMPLOYEE

where EMP_ID CODE = new_ins.PROJ_MGR_CODE);
if found <> 1 then
signal user_defined exception
end if;
end
end if;

% Parent “EMPLOYEE" must exist when inserting a child in
"ADP_PROJ_INFO"
if (new_ins.POC_CODE is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from EMPLOYEE
where EMP_ID_CODE = new_ins.POC_CODE);
if found <> 1 then
signal user_defined exception
end if;
end
end if;
end

/

% Before insert trigger "tib_contracts" for table "CONTRACTS"
create trigger tib contracts before insert on CONTRACTS
referencing new as new_ins for each row
begin
declare user_defined exception exception for SQLSTATE '99999';
declare found integer;

% Parent "ACCOUNT" must exist when inserting a child in "CONTRACTS"
if (new_ins.JON is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from ACCOUNT
where JON = new_ins.JON);
if found <> 1 then
signal user_defined exception
end if;
end
end if;

% Parent "EMPLOYEE" must exist when inserting a child in "CONTRACTS"
if (new_ins.REQUESTER is not null) then

51

begin
set found = 0O;
select 1
into found
from dummy
where exists (select 1
from EMPLOYEE
where EMP ID_CODE = new_ins.REQUESTER);
if found <> 1 then
signal user_ defined exception
end if;
end
end if;
end

/

% After insert trigger “"tia contracts" for table "CONTRACTS"
create trigger tia contracts after insert on CONTRACTS
referencing new as new_ins for each row
begin

declare user_defined exception exception for SQLSTATE '99999°';

call CALC_BAL_CONTRACT(new_ins.JON,new_ins.CONTRACT_ TYPE)

end

/

% Before update trigger "tub_contracts" for table "CONTRACTS"

create trigger tub_contracts before update of JON,
CONTRACT_TYPE,

REQUESTER,
DoC_#
on CONTRACTS
referencing new as new_upd old as old_upd for each row
begin
declare user_defined exception exception for SQLSTATE 99999 ;
declare found integer;

% Parent "ACCOUNT" must exist when updating a child in "CONTRACTS"
if (new_upd.JON is not null and
((old_upd.JON is null) or
(new_upd.JON <> old upd.JON))) then
begin
set found = O;
select 1
into found
from dummy
where exists (select 1
from ACCOUNT
where JON = new_upd.JON);
if found <> 1 then
signal user_defined_exception

52

end if;
end
end if;

% Parent "EMPLOYEE" must exist when updating a child in "CONTRACTS"
if (new_upd.REQUESTER is not null and
((01d_upd.REQUESTER is null) or
(new_upd.REQUESTER <> old upd.REQUESTER))) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from EMPLOYEE
where EMP_ID CODE = new_upd.REQUESTER) ;
if found <> 1 then
signal user_defined_exception
end if;
end
end if;

% Cannot modify parent code of "EMPLOYEE" in child "CONTRACTS”
if ((new_upd.REQUESTER is null and old_upd.REQUESTER is not null) or
new_upd.REQUESTER <> old upd.REQUESTER) then
signal user_defined_exception
end if;
end

/

% Update trigger "tua_contracts" for table "CONTRACTS"
create trigger tua_ contracts after update of JON,
CONTRACT_TYPE,
CONTRACTOR_1ID,
PROJ_COST,
ACTUAL_COST
on CONTRACTS
referencing new as new_upd old as old_upd for each row
begin
declare user_defined exception exception for SQLSTATE '99999°';
declare found integer;

call CALC_BAL_CONTRACT (new_upd.JON,new_upd.CONTRACT TYPE)

end

/

% After delete trigger "tda contracts" for table "CONTRACTS"
create trigger tda_contracts after delete on CONTRACTS
referencing old as old _del for each row

begin

53

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

call CALC_BAL_CONTRACT(old_del.JON,old_del.CONTRACT_TYPE)

end

/

% Before insert trigger "tib_employee" for table "EMPLOYEE"
create trigger tib_employee before insert on EMPLOYEE
referencing new as new_ins for each row
begin
declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "DEPARTMENT" must exist when inserting a child in "EMPLOYEE"
if (new_ins.DEPT CODE is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from DEPARTMENT
where DEPT_CODE = new_ins.DEPT_CODE) ;
if found <> 1 then
signal user_defined_exception
end if;
end
end if;
end

/

% Before insert trigger "tib_faculty" for table "FACULTY"

create trigger tib faculty before insert on FACULTY

referencing new as new_ins for each row

begin
declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "EMPLOYEE" must exist when inserting a child in "FACULTY"
if (new_ins.EMP_ID_CODE is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from EMPLOYEE
where EMP ID CODE = new_ins.EMP_ID_CODE);
if found <> 1 then

54

signal user_defined exception
end if;
end
end if;
end

/

% Before insert trigger "tib labor_ chgs" for table "LABOR_CHGS"
create trigger tib_labor chgs before insert on LABOR_CHGS
referencing new as new_ins for each row
begin
declare user_ defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "LABOR LES" must exist when inserting a child in
"LABOR_CHGS"
if (new_ins.EMP_ID CODE is not null and
new_ins.PPE DATE is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from LABOR _LES
where EMP_ID CODE = new_ins.EMP_ID CODE
and PPE_DATE = new_ins.PPE_DATE);
if found <> 1 then
signal user_defined exception
end if;
end
end if;

% Parent "ACCOUNT" must exist when inserting a child in "LABOR_CHGS"
if (new_ins.JON is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from ACCOUNT
where JON = new_ins.JON);
if found <> 1 then
signal user defined exception
end if;
end
end if;

% Parent "EMPLOYEE" must exist when inserting a child in "LABOR_CHGS"

if (new_ins.EMP_ID CODE is not null) then
begin

55

set found = O;
select 1
into found
from dummy
where exists (select 1

from EMPLOYEE
where EMP_ID CODE = new_ins.EMP_ID_CODE);

if found <> 1 then
signal user_defined_exception
end if;
end
end if;
end
/

% After insert trigger "tia labor chgs" for table "LABOR_CHGS”
create trigger tia labor_chgs after insert on LABOR_CHGS
referencing new as new_ins for each row

begin
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare

user_defined_exception exception for SQLSTATE '99999"';
found integer;

emp cat char(1l);

jon_type char(2);

base_sal numeric(10,2);
hourly rate numeric (7,2);
hourly ot_rate numeric(7,2);
otm_cap numeric(7,2);

yr_hrs integer;

rr_ot_fac numeric(6,4);

sal eff date;

acc_rate decimal(3,2);

select OT_CAP into otm cap from FMS_CFG;
select YR LABOR _HRS into yr_ hrs from FMS_CFG;
select RR_OT_RATE_FACT into rr_ot_fac from FMS_CFG;

%Calculate the "TOTALCHG" field

if (new_

begin

ins.EMP_ID CODE is not null) then

set found=0;
select 1
into found
from dummy
where exists (select 1
from EMPLOYEE
where EMP_ID CODE=new_ins.EMP_ID_ CODE);

select EFF_SAL DATE into sal_eff from EMPLOYEE
where new_ins.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE;

if (new_ins.PPE_DATE >= sal_eff) then

begin

56

select BASE_SALARY into base_sal from EMPLOYEE
where new_ins.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE;
select ACCEL_RATE into acc_rate from EMPLOYEE
where new_ins.EMP ID CODE=EMPLOYEE.EMP ID CODE;
end
else
begin
select BASE_SALARY into base_sal from SALARY HISTORY
where new_ins.EMP_ID_ CODE=SALARY HISTORY.EMP_ ID CODE
and new_ins.PPE_DATE >= SALARY HISTORY.BEGIN DATE
and new_ins.PPE_DATE <= SALARY HISTORY.END DATE;
select ACCEL_RATE into acc_rate from SALARY HISTORY
where new_ins.EMP_ID_CODE=SALARY HISTORY.EMP_ID CODE
and new_ins.PPE_| DATE >= SALARY HISTORY BEGIN DATE
and new_ins.PPE_| DATE <= SALARY _HISTORY.END DATE,
end
end if;

set hourly rate=base sal/yr_hrs;

if ((hourly rate*1.5) > otm cap) then
set hourly ot_rate=otm_cap
else
set hourly ot rate=hourly rate*l.5
end if;

select FUND_TYPE into jon_type from ACCOUNT
where new_ins.JON=ACCOUNT.JON;

select CATEGORY into emp cat from EMPLOYEE
where new_ins.EMP_ID_ CODE=EMPLOYEE.EMP_ID_CODE;

if (jon_type='RR') then
begin
if (emp_cat='F') then
update LABOR_CHGS, EMPLOYEE
set TOTAL_CHG=(HOURS*hourly rate*acc_rate)
where LABOR_CHGS.EMP_ID_CODE=new_ins.EMP_ID_CODE
and LABOR_CHGS.PPE_DATE=new_ins.PPE DATE
and LABOR CHGS. JON—new ins.JON
and new_ins.EMP_ID CODE-EMPLOYEE EMP_ID_CODE
else
if (emp_cat='S') then
update LABOR_CHGS,EMPLOYEE
set TOTAL CHG—(HOURS*hourly rate*acc_rate)+
(OT_HOURS*hourly ot rate*rr ot_fac)
where LABOR_CHGS.EMP_ID CODE=new_ins. EMP_ID_CODE
and LABOR_CHGS.PPE_DATE=new_ins.PPE_DATE
and LABOR CHGS.JON=new_ins.JON
and new_ins.EMP_ID CODE EMPLOYEE.EMP_ID_CODE
end if
end if

57

end
else
begin
if (emp_cat='F') then
update LABOR_CHGS
set TOTAL_ CHG=(HOURS*hourly rate)
where LABOR_CHGS.EMP_ID_ CODE=new_ins.EMP_ID_CODE
and LABOR_CHGS.PPE_DATE=new_ins.PPE_DATE
and LABOR_CHGS.JON=new_ins.JON
else
if (emp _cat='S') then
update LABOR_CHGS
set TOTAL_CHG=(HOURS*hourly rate)+
(OT_HOURS*hourly ot_rate)
where LABOR_CHGS.EMP_ID CODE=new_ins.EMP_ID_CODE
and LABOR_CHGS.PPE DATE=new_ins.PPE_DATE
and LABOR CHGS.JON=new_ins.JON
end if
end if
end
end if;

if (emp_cat='F') then
call CALC_BAL_FAC_LABOR(new_ins.JON)
else
if (emp_cat='S') then
call CALC_BAL_SPT LABOR(new_ins.JON)
end if
end if;

if (found <> 1) then
signal user_defined_ exception
end if;
end
end if;
end

/

% Update trigger "tua_labor_chgs" for table "LABOR_CHGS"
create trigger tua_labor_chgs after update of EMP_ID_CODE,
PPE_DATE,
JON,
HOURS,
OT_HOURS
on LABOR_CHGS
referencing new as new_upd old as old_upd for each row
begin
declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;
declare emp_cat char(1l);
declare jon_type char(2);
declare base_sal numeric(10,2);

58

declare
declare
declare
declare
declare
declare
declare

hourly rate numeric (7,2);
hourly ot _rate numeric(7,2);
otm_cap numeric(7,2);
yr_hrs integer;

rr_ot_fac numeric(6,4);
sal_eff date;

acc_rate decimal(3,2);

select OT_CAP into otm_cap from FMS_CFG;
select YR_LABOR _HRS into yr hrs from FMS_CFG;
select RR_OT_RATE FACT into rr_ ot_fac from FMS_CFG;

%Calculate the "TOTALCHG" field
if ((new_upd.HOURS<>old upd.HOURS) or
(new_upd.OT HOURS<>old_upd.OT_HOURS)) then

begin

set found=0;

select 1
into found
from dummy

where

exists (select 1

from EMPLOYEE
where EMP_ID CODE=new_upd.EMP_ ID CODE);

select EFF_SAL DATE into sal_eff from EMPLOYEE
where new_upd.EMP_ID CODE=EMPLOYEE.EMP_ID_CODE;

if (new_upd.PPE_DATE >= sal_eff) then
begin
select BASE_SALARY into base sal from EMPLOYEE
where new_upd.EMP_ID CODE=EMPLOYEE.EMP_ ID_CODE;
select ACCEL_RATE into acc_rate from EMPLOYEE
where new_upd.EMP_ID CODE=EMPLOYEE.EMP_ ID CODE;
end
else
begin

select BASE_SALARY into base sal from SALARY HISTORY
where new_upd.EMP_ID CODE=SALARY HISTORY.EMP_ID_CODE
and new_upd.PPE_DATE >= SALARY HISTORY.BEGIN_DATE
and new_upd.PPE DATE <= SALARY HISTORY.END DATE;
select ACCEL_RATE into acc_rate from SALARY HISTORY
where new_upd.EMP_ID_CODE=SALARY HISTORY.EMP_ID CODE
and new_upd.PPE_DATE >= SALARY HISTORY.BEGIN DATE
and new_upd.PPE_DATE <= SALARY_HISTORY.END_ DATE;

end
end if;

set hourly rate=base_sal/yr_ hrs;
if ((hourly rate*1.5) > otm_cap) then

set hourly ot rate=otm_cap

59

else
set hourly ot rate=hourly rate*l.5
end if;

select FUND_TYPE into jon_ type from ACCOUNT
where new_upd.JON=ACCOUNT.JON;

select CATEGORY into emp cat from EMPLOYEE
where new_upd.EMP_ID CODE=EMPLOYEE.EMP_ID CODE;

if (jon_type='RR') then
begin
if (emp_cat='F') then
update LABOR_CHGS,EMPLOYEE
set TOTAL CHG=(HOURS*hourly rate*acc_rate)
where LABOR CHGS.EMP_ID CODE=new_upd.EMP_ID CODE
and LABOR CHGS.PPE_DATE=new_upd.PPE_DATE
and LABOR_CHGS.JON=new_upd.JON
and new_upd.EMP_ID_ CODE=EMPLOYEE.EMP_ID CODE
else
if (emp_cat='S') then
update LABOR_CHGS,EMPLOYEE
set TOTAL_CHG=(HOURS*hourly_ rate*acc rate)+
(OT_HOURS*hourly ot_rate*rr_ ot_fac)
where LABOR CHGS.EMP_ID_CODE=new_upd.EMP_ID_CODE
and LABOR_CHGS.PPE_DATE=new_upd.PPE_DATE
and LABOR_CHGS.JON=new_upd.JON
and new_upd.EMP_ID_CODE=EMPLOYEE.EMP_ID_CODE
end if
end if
end
else
begin
if (emp _cat='F') then
update LABOR_CHGS
set TOTAL_CHG=(HOURS*hourly_ rate)
where LABOR CHGS.EMP_ID_ CODE=new_upd.EMP_ID_CODE
and LABOR_CHGS.PPE_DATE=new_upd.PPE_DATE
and LABOR_CHGS.JON=new_upd.JON
else
if (emp _cat='S') then
update LABOR_CHGS
set TOTAL CHG=(HOURS*hourly rate)+
(OT_HOURS*hourly ot_rate)
where LABOR CHGS.EMP_ID CODE=new_upd.EMP_ID_CODE
and LABOR_CHGS.PPE_DATE=new_upd.PPE_DATE
and LABOR_CHGS.JON=new_upd.JON
end if
end if
end
end if;

60

if (emp_cat='F') then
call CALC BAL_ FAC_LABOR(new_upd.JON)
else

if (emp_cat='S') then
call CALC_BAL SPT_LABOR(new_upd.JON)
end if
end if;

if (found <> 1) then
signal user defined _exception
end if;
end
end if;
end

/

% After delete trigger "tda_labor_chgs" for table "LABOR CHGS"
create trigger tda_labor_ chgs after delete on LABOR_CHGS
referencing old as old_del for each row
begin
declare user_defined exception exception for SQLSTATE '99999°';
declare found integer;
declare emp_cat char(l);

select CATEGORY into emp cat from EMPLOYEE
where old_del.EMP_ID_CODE=EMPLOYEE.EMP ID_ CODE;

if (emp_cat='F') then

call CALC_BAL_FAC_LABOR(old_del.JON)
elseif (emp cat='S') then

call CALC_BAL SPT_LABOR(old_del.JON)
end if;

end

/

% Before insert trigger "tib labor_ les" for table "LABOR_LES"
create trigger tib labor_ les before insert on LABOR_LES
referencing new as new_ins for each row
begin
declare user defined exception exception for SQLSTATE '99999';
declare found integer;

% Parent "EMPLOYEE" must exist when inserting a child in "LABOR LES"
if (new_ins.EMP_ID CODE is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1

61

from EMPLOYEE
where EMP_ID CODE = new_ ins.EMP_ID_CODE);
if found <> 1 then
signal user_defined exception

end if;
end
end if;

end

/

% Before insert trigger "tib military"” for table "MILITARY"
create trigger tib military before insert on MILITARY
referencing new as new_ins for each row
begin
declare user_defined_exception exception for SQLSTATE '99999°';
declare found integer;

% Parent "EMPLOYEE" must exist when inserting a child in "MILITARY"
if (new_ins.EMP_ID_CODE is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from EMPLOYEE
where EMP ID_CODE = new_ins.EMP_ID_CODE);
if found <> 1 then
signal user_defined exception
end if;
end
end if;
end

/

% Before insert trigger "tib_ optar_reqg" for table "OPTAR_REQ"
create trigger tib_optar req before insert on OPTAR REQ
referencing new as new_ins for each row
begin
declare user_defined_exception exception for SQLSTATE '99999°';
declare found integer;

% Parent "EMPLOYEE" must exist when inserting a child in "OPTAR_REQ"
if (new_ins.EMP_ID_CODE is not null) then
begin
set found = 0O;
select 1
into found
from dummy
where exists (select 1
from EMPLOYEE
where EMP_ID CODE = new_ins.EMP_ID_CODE);

62

if found <> 1 then
signal user_defined exception
end if;
end

end if;

% Parent "ACCOUNT" must exist when inserting a child in "OPTAR_REQ"
if (new_ins.JON is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from ACCOUNT
where JON = new_ins.JON);
if found <> 1 then
signal user_defined_exception
end if;
end
end if;

% Parent "ADP_PROJ_INFO" must exist when inserting a child in

"OPTAR_REQ"
if (new_ins.ADP_PROJ_# is not null) then
begin
set found = 0;
select 1

into found
from dummy
where exists (select 1
from ADP_PROJ_INFO
where ADP_PROJ_# = new_ins.ADP_PROJ_#);
if found <> 1 then
signal user defined_exception
end if;
end
end if;
end

/

% After insert trigger "tia optar req" for table "OPTAR_REQ"
create trigger tia optar_req after insert on OPTAR_REQ
referencing new as new_ins for each row
begin

declare user defined exception exception for SQLSTATE '99999';

call CALC BAL_OPTAR(new_ins.JON);

end

/

63

% Update trigger "tua_optar req" for table "OPTAR REQ"
create trigger tua_optar req after update of JON,
EMP_ID_CODE,
DoC_#,
PROJ_COST,
ACTUAL_COST,
ADP_PROJ_#
on OPTAR REQ
referencing new as new_upd old as old_upd for each row
begin
declare user_defined exception exception for SQLSTATE '99999°;
declare found integer;

call CALC_BAL OPTAR(new_upd.JON);

end

/

% After delete trigger "tda_optar req"” for table "OPTAR REQ"
create trigger tda_optar req after delete on OPTAR_REQ
referencing old as old_del for each row
begin
declare user defined exception exception for SQLSTATE '$9999°';
declare found integer;

call CALC_BAL OPTAR(old_del.JON);

end

/

% Before insert trigger "tib other leave"” for table "OTHER_LEAVE"
create trigger tib_other leave before insert on OTHER_LEAVE
referencing new as new_ins for each row
begin

declare user_defined exception exception for SQLSTATE *99999';

declare found integer;

% Parent "LABOR LES" must exist when inserting a child
"OTHER_LEAVE"
if (new_ins.EMP_ID CODE is not null and
new_ins.PPE DATE is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from LABOR LES
where EMP_ID CODE = new_ins.EMP_ID_CODE
and PPE_DATE = new_ins.PPE DATE);

64

in

if found <> 1 then
signal user_defined_exception
end if;
end
end if;

% Parent "OTHER LV_TYPE" must exist when inserting a child in

"OTHER_LEAVE"
if (new_ins.TYPE is not null) then
begin
set found = O;
select 1
into found
from dummy
where exists (select 1
from OTHER LV_TYPE
where OTHER LV_TYPE_CODE = new_ins.TYPE);
if found <> 1 then
signal user_defined_exception
end if;
end
end if;
end

/

% Before update trigger "tub_other leave" for table "OTHER_LEAVE"
create trigger tub_other leave before update of EMP_ID CODE,
PPE_DATE,
TYPE
on OTHER_LEAVE
referencing new as new_upd old as old_upd for each row
begin
declare user defined exception exception for SQLSTATE '99999';
declare found integer;

% Parent "LABOR LES" must exist when updating a child in

"OTHER_LEAVE"
if (new_upd.EMP_ID CODE is not null and
new_upd.PPE_DATE is not null and
((0ld_upd.EMP_ID CODE is null and
old upd.PPE_DATE is null) or
(new_upd.EMP_ID CODE <> old upd.EMP_ID CODE or
new_upd.PPE_DATE <> old_upd.PPE_DATE))) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from LABOR_LES
where EMP_ID CODE = new_upd.EMP _ID CODE
and PPE_DATE = new_upd.PPE_DATE);

65

if found <> 1 then
signal user_defined exception
end if;
end
end if;

% Parent "OTHER LV_TYPE" must exist when updating a child in
"OTHER_LEAVE"
if (new_upd.TYPE is not null and
((old_upd.TYPE is null) or
(new_upd.TYPE <> old_upd.TYPE))) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from OTHER LV_TYPE
where OTHER_LV_TYPE CODE = new_upd.TYPE);
if found <> 1 then
signal user_defined_exception
end if;
end
end if;

% Cannot modify parent code of "OTHER LV TYPE" in child "OTHER_LEAVE"
if ((new_upd.TYPE is null and old_upd.TYPE is not null) or
new_upd.TYPE <> old upd.TYPE) then
signal user_defined_exception
end if;
end

/

% Before insert trigger "tib_pi" for table "PI"
create trigger tib_pi before insert on PI
referencing new as new_ins for each row
begin
declare user_defined exception exception for SQLSTATE '99999';
declare found integer;
% Parent "EMPLOYEE" must exist when inserting a child in "PI"
if (new_ins.EMP_ID CODE is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from EMPLOYEE
where EMP_ID CODE = new_ins.EMP_ID_ CODE);
if found <> 1 then
signal user_defined_exception

66

end if;
end
end if;

% Parent "ACCOUNT" must exist when inserting a child in "PI"
if (new_ins.JON is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from ACCOUNT
where JON = new_ins.JON);
if found <> 1 then
signal user_ defined exception
end if;
end
end if;
end

/

% Before insert trigger "tib_salary history" for table "SALARY HISTORY"
create trigger tib_salary history before insert on SALARY HISTORY
referencing new as new_ins for each row
begin
declare user_defined exception exception for SQLSTATE '99999°';
declare found integer;

% Parent "EMPLOYEE" must exist when inserting a child in
"SALARY_ HISTORY"
if (new_ins.EMP_ID CODE is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from EMPLOYEE
where EMP_ID CODE = new_ins.EMP_ID_CODE);
if found <> 1 then
signal user defined_exception
end if;
end
end if;
end

/

% Before insert trigger "tib staff" for table "STAFF"
create trigger tib_staff before insert on STAFF
referencing new as new_ins for each row

begin

67

declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "EMPLOYEE" must exist when inserting a child in "STAFF”
if (new_ins.EMP ID_CODE is not null) then
begin
set found = 0O;
select 1
into found
from dummy
where exists (select 1
from EMPLOYEE .
where EMP_ID CODE = new_ins.EMP_ID_CODE);
if found <> 1 then
signal user_defined exception
end if;
end
end if;
end

/

% Before insert trigger "tib travel" for table "TRAVEL"

create trigger tib_travel before insert on TRAVEL

referencing new as new_ins for each row

begin
declare user_defined_exception exception for SQLSTATE '99999';
declare found integer;

% Parent "ACCOUNT" must exist when inserting a child in "TRAVEL"
if (new_ins.JON is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from ACCOUNT
where JON = new_ins.JON);
if found <> 1 then
signal user_defined exception
end if;
end
end if;
end

/

% After insert trigger "tia_travel" for table "TRAVEL"
create trigger tia_travel after insert on TRAVEL
referencing new as new_ins for each row
begin
declare user_defined exception exception for SQLSTATE '99999°';

68

call CALC BAL_TRAV(new_ins.JON);

end

/

% Update trigger "tua_travel"” for table "TRAVEL"
create trigger tua_travel after update of TO#,

PROJ_COST,
ACTUAL_COST,
JON

on TRAVEL

referencing new as new_upd old as old_upd for each row

begin

declare user defined exception exception for SQLSTATE '99999';
declare found integer;

call CALC_BAL TRAV(new_upd.JON);

end

/

% After delete trigger "tda travel” for table "TRAVEL"

create trigger tda_travel after delete on TRAVEL

referencing old as old_del for each row

begin
declare user_defined exception exception for SQLSTATE '99999';
declare found integer;

call CALC_BAL_TRAV(old del.JON);

end

/

% Before insert trigger "tib travel requests" for table "TRAVEL_ REQUESTS"
create trigger tib_travel requests before insert on TRAVEL REQUESTS
referencing new as new_ins for each row
begin
declare user_defined exception exception for SQLSTATE '99999';
declare found integer;

% Parent "TRAVEL" must exist when inserting a child in
"TRAVEL_REQUESTS"
if (new_ins.TO# is not null) then
begin
set found = 0;
select 1
into found
from dummy
where exists (select 1
from TRAVEL

69

end

where TO# = new_ins.TO#);
if found <> 1 then
signal user_defined exception
end if;
end
end if;

70

APPENDIX C. FMS DATABASE STORED PROCEDURES

O/ % sk ok ok sk ok kR kR Rk kK sk ook ol etk ok ok kRO

% Procedure CALC_BAL CONTRACT
%**%
create procedure %PROC% (IN jo_num char(5), cont_type char(1))
begin

declare current_fy end date;

declare sum_actual numeric(12,2);

declare sum_proj numeric(12,2);

declare sum_cont numeric(12,2);

declare begin_date date;

select CURRENT _FY _END DATE into current_fy end from FMS_CFG,;

select DATE_RECEIVED into begin_date from ACCOUNT
where ACCOUNT.JON=jo_num,

select sum(ACTUAL_COST) into sum_actual from CONTRACTS
where CONTRACTS.JON = jo_num
and CONTRACTS.CONTRACT_TYPE = cont_type
and CONTRACTS.FY_ENDING >= begin_date
and CONTRACTS.FY_ENDING <= current_fy_end,;

if (sum_actual is null) then
set sum_actual = 0.00
end if]

select sum(PROJ_COST) into sum_proj from CONTRACTS
where CONTRACTS.JON = jo_num
and CONTRACTS.CONTRACT_TYPE = cont_type
and CONTRACTS.ACTUAL_COST is null
and CONTRACTS FY_ENDING >= begin_date
and CONTRACTS.FY_ENDING <= current_fy_end,

if (sum_proj is null) then
set sum_proj = 0.00
end if,

set sum_cont = sum_actual + sum_proj;

71

if (cont_type ='M’) then
update ACCOUNT
set BAL CONT_MIPR = INIT_CONT_MIPR - sum_cont
where ACCOUNT.JON =jo_num

else
if (cont_type = 'T') then
update ACCOUNT

set BAL CONT IPA =INIT CONT_IPA - sum_cont
where ACCOUNT.JON =jo_num

else
if (cont_type = '0") then
update ACCOUNT

set BAL CONT_OTH =INIT_CONT_OTH - sum_cont
where ACCOUNT.JON = jo_num
end if
end if
end if;

end
/

96**96

96**96

% Procedure CALC_BAL_FAC _LABOR
96**96
create procedure %PROC% (IN jo_num char(5))
begin

declare current_fy end date;

declare begin_date date;

declare sum_chg numeric(12,2);

select CURRENT _FY_END_ DATE into current_fy_end from FMS_CFG;

select DATE RECEIVED into begin_date from ACCOUNT
where ACCOUNT.JON=jo_num;

select sum(TOTAL CHG) into sum_chg from LABOR_CHGS, FACULTY
where FACULTY.EMP_ID CODE =LABOR_CHGS EMP_ID_CODE
and LABOR_CHGS.JON = jo_num
and LABOR_CHGS FY_ENDING >= begin_date

72

and LABOR_CHGS.FY_ENDING <= current_fy end,;

if (sum_chg is null) then
set sum_chg =0.00
end if;

update ACCOUNT
set BAL FAC LABOR =INIT FAC LABOR_$ - sum_chg
where ACCOUNT.JON =jo_num;
end
/

O % % ko ok sk ok ook ok ko ok ok KRR KR KA A A KRR RRH KKK KO

96**96

% Procedure CALC_BAL OPTAR
96**96
create procedure %PROC% (IN jo_num char(5))
begin

declare current_fy_end date;

declare sum_actual numeric(12,2);

declare sum_proj numeric(12,2);

declare sum_optar numeric(12,2);

declare begin_date date;

select CURRENT FY END DATE into current_fy_end from FMS_CFG;

select DATE_RECEIVED into begin_date from ACCOUNT
where ACCOUNT.JON=jo_num;

select sum(ACTUAL _COST) into sum_actual from OPTAR_REQ
where OPTAR_REQ.JON =jo_num
and OPTAR_REQ.FY_ENDING >= begin_date
and OPTAR REQ.FY ENDING <= current_fy end;

if (sum_actual is null) then
set sum_actual = 0.00

end if;

select sum(PROJ_COST) into sum_proj from OPTAR_REQ
where OPTAR_REQ.JON = jo_num

73

and OPTAR_REQ.ACTUAL_COST is null
and OPTAR REQ.FY _ENDING >= begin date
and OPTAR_REQ.FY ENDING <= current_fy end,;

if (sum_proj is null) then
set sum_proj = 0.00
end if,

set sum_optar = sum_actual + sum_proj;

update ACCOUNT
set BAL_OPTAR = INIT_OPTAR_$ - sum_optar
where ACCOUNT.JON =jo_num,;
end
/

O/ H ko ok ok ok ok ok ook ko ook kR sk Rk R KR KRR R kR Rk kK KO

O/ % Kk sk ook sk ook o ok ok ok ok ook ook R HOR Rk ok ok ok R KRRk KRRk Rk kK KO

% Procedure CALC_BAL_SPT LABOR
%**%
create procedure %PROC% (IN jo_num char(5))
begin

declare current_fy_end date;

declare begin_date date;

declare sum_chg numeric(12,2);

select CURRENT_FY END_DATE into current_fy_end from FMS_CFG;

select DATE RECEIVED into begin_date from ACCOUNT
where ACCOUNT.JON=jo_num;

select sum(TOTAL CHG) into sum_chg from LABOR_CHGS, STAFF
where STAFF. EMP ID CODE = LABOR_CHGS.EMP_ID_CODE
and LABOR_CHGS.JON = jo_num
and LABOR_CHGS FY_ENDING >= begin_date
and LABOR _CHGS FY ENDING <= current_fy end,;

if (sum_chg is null) then

set sum_chg = 0.00
end if;

74

update ACCOUNT
set BAL_SPT LABOR =INIT_SPT LABOR_$ - sum_chg
where ACCOUNT.JON =jo_num;
end
/

96**96

O/ sk ok sk o ok ook R R oK KR KR KRR A KRR KO

% Procedure CALC BAL TRAV
96**96
create procedure %PROC% (IN jo_num char(5))
begin

declare current fy end date;

declare sum_actual numeric(12,2);

declare sum_proj numeric(12,2);

declare sum_trav numeric(12,2);

declare begin_date date;

select CURRENT_FY_END_DATE into current_fy end from FMS_CFG;

select DATE_RECEIVED into begin_date from ACCOUNT
where ACCOUNT.JON=jo_num;

select sum(ACTUAL_COST) into sum_actual from TRAVEL
where TRAVEL.JON = jo_num
and TRAVEL FY_ENDING >= begin_date
and TRAVEL.FY_ENDING <= current_fy_end;

if (sum_actual is null) then
set sum_actual = 0.00
end if;

select sum(PROJ_COST) into sum_proj from TRAVEL
where TRAVEL.JON = jo_num
and TRAVEL. ACTUAL_COST is null
and TRAVEL. FY_ENDING >=begin_date
and TRAVEL.FY ENDING <= current_{y_end,

if (sum_proj is null) then
set sum_proj = 0.00

75

end if;
set sum_trav = sum_actual + sum_proj;

update ACCOUNT
set BAL_ TRAVEL = INIT TRAVEL_S$ - sum_trav
where ACCOUNT.JON = jo_num;
end
/

%**%

76

APPENDIX D. FMS POWERBUILDER LIBRARY OBJECT LISTING

The FMS PowerBuilder library object listing is shown on the next page.

77

ZXor_tms
{— I fms_acc2.pbl

=B w_acct_list

(— 50 fms_acct.pbl

w_acct_detail

Account refated objects used solely by or_fms
374737 18:23:03 (43883)
3/4/87 18:23:02 [13854)

EXE w_acct_search 3/4/97 18:23:03 (183916}

Account related abjects shared by both or_fms and faculty executables

— d_acct_categories
— @ d_acct_contract_list
— @ d_acct_heading

— (e} d_acct_labor_list
-2 d_acct_list

— @ d_acct_optar_list

— E d_acct_travel_list

| m d_sponsor_list

2= w_sponsor_list

3/4/97 13:22:57
3/4/97 18:22:67
3/4/97 18:22:57
3724/97 18:22:56
374/97 18:22:56
3/4/97 18:22:56
3/4/37 18:22:57
374,97 18:22:57
3/4/37 18:23:04

12821)
(5634)
(16642
(8596)
(5934}
(10284)
(6895)
(7025)
(147146)

— (0 fms_emp.pbl

For employes related objects

L[d_emp_acct_summary 3/4/97 18:22:57

(- =1 d_employee_detail
— @ o_emplopec_list

| (aa} d_employes_list_print
|— B2 s_emp_struc

l— X w_employec_detait
— & w_employee_list

L E3 w_emoloyee_search

+— (1} frns_main.pbl
— R mocha
or_fmz
I— T m_mcnu
- EX w_fme_about

- EX w_mainframewindow
- EX w_password

L B3 w_toolbars_contig

Main module for or_tms

3/4/97 18.22:57
3/4/97 18:22:57
3/4/97 18:22:57
3/4/397 18:23:04
3/4/97 18:23:08
3/4/97 18:23:05
3/4/97 18:23:05

F v

0 Ll

3/4/97 18:23:00

(8764)
nssvn)
(4898)
(6832)
{355)
(18147}
(17168}
(9586)

3/4/97 18:23:33
3/4/97 13:23:01
3/4/97 18:23:00
3/4/97 18:23:01
3/4/97 18:23.01
3/4/97 18:23:02

(2104) Financial Managsment System for the OR Department Version 1.3
(3055}

(19681)

(8018)

(2441)

(11185)

(15360)

[0 fons_mnt.pbl

Maintenance ralatad objects shared by both or_fms and faculty executables

— d_contracts_detail
— El d_labor_charge_|
— @ d_labor_les

— E d_optar_detail

— = d_other_leave_list

— @ d_sponsor_detail

| [aald_travel_detail

ol d_travelles_fist

I B3 w_contracts_maintenance
|— EX w_labor_maintenance

— B} w_optar_maintenance

E w_sponsorl_maintenance
L BT w_travel_maintenance

t— (1) frns_mnt2.pbl
] d_acct_detail
— m d_emplopee
|— @] o_taculty

|- Gl df_labor_acct_list

— T d_lsbor_done_employee_list
— [F_T:‘ d_labor_employee_list

3/4/97 18:22:58
3/4797 18:22:58
374797 18:22:58
374797 18:22:58
3/4/97 18:22.58
3/4/97 18:22:57
374797 18:22:57
374797 18:22:57
3/4/97 12:22:05

3/4/37 18:2:
374797 18:23:07

Maintenance relsted objects used
58

3/4/97 1822
3/4/97 18:22:58
3/4/97 18:22:58
374797 18:22:58
3/4/97 18:22:58
374797 18:22:58

(11312)

(5538)

7271)

(12027)

(4565]

{7703)

(7665)

144439)

[14688)

(25228)

13783}

14218}

(18114}

solely by or_fms
{15286)
{(13488)

(3836)

{4554)

[5184) list of employees whose les are done:
(5384)

|— [nac) d_wilitary 374797 18:22:58 (3867)

|- C=ld_pi_detait 3/4/97 18:22:58 (2729)

— [P o_statt 3/4/97 18:22:58 (3858)

— B2 w_acct_maintenance 374/97 18:23:07 (18457)

— 22 w_employee_maintenance 37497 18:23:08 (17666)

— B2 w_labor 374797 18:23.09 (48640]

L 22 w_ppedaste 374797 18:23:09 (6688}
L R fm=_tpt.pb! Repost related sntries for OR FMS

—[1d_acct_contract_spt 3/4/87 1823:00 (20697)

— Tl a_acct_optar_rpt 3/4/37 18:23:00 [19287)

|— Tl d_acct_pi_tist 3/4/97 18:23:00 (3133)

d_acct_travel_rpt 3/4/97 18:23:00 (19211)

-l d_dr_chgs 3/4/97 18:23:00 [2688)

@ d_dt_chas 3/4/97 18:23:00 (2695)

I [Eald_faculty_cert_rpt 3/4/97 18:22:53 (18239)

-l d_tacully_cert_view 3/4/97 18:22:58 (137587)

— M a_other_tcave 3/4/97 18:23:00 (3134)

- [5=7] o_proj_status_mpot 3/4/97 18:22:59 (20689)

b [l cf_er_chgs 3/4/97 1823:00 (3127)

- [d_st_fmt_chgs 3/4/97 18:23:00 (2714)

— Bl a_st_ir_chgs 3/4/97 18:23:00 (3185)

|—Gacld_st_omn_chgs 3/4/97 18:23:00 (2715)

—[ald_st_ot_chgs 3/4/97 18:23:00 ([3198)

I d_st_r_chge 3/4/97 18:23:00 (3147)

[l d_staff_cert_mpt 3/4/97 18:22:59 (18474)

[l d_stalf_cert_view 3/4/97 18:22:59 (15199)

1 d_teavelters_mpt 3/4/97 18:22:59 (2581)

- EX w_scct_contract_mpt 374797 18:23:09 (10300}

|— B2 w_acct_optar_mt 3/4/97 18:23:10 (10257)

|~ B2 w_acct_tiavel_mpt 3/4/97 182310 (10372)

I— EX w_faculy_cen_rpt 3/4/97 18:23:10 (16681}

- EX w_proi_status_rpt 374797 18:23:10 (6350)

- FR w_report_selection 3/4/97 18:23:11 (8251)

L B w_staff_cert_pt 3/4/97 18:23.11 (16615)

78

APPENDIX E. FMS APPMODELER REPORT

The partial AppModeler report produced from the FMS physical data model begins on the
next page.

79

Physical Data Model fms

Full PDM report

S-Designor March 11, 1997 Page 80
80

Physical Data Model fms

Model information

Project Name: fms
Project Code: FMS

Database: Watcom SQL 4.0

Name: fms

Code: FMS

Label: Ops Research Dept Financial Management System

Author: Alan E. Pires

Version: 1.01

Created On: 11/30/95 8:01 AM Modified On: 2/3/97 4:51 PM

Model Description
Financial Management System for the Operations Research Department
Begin Script

End Script

Business Rules

Domains

Tables

Table List

Name Code Number

account ACCOUNT
adp_proj_info ADP_PROJ_INFO
contracts CONTRACTS
department DEPARTMENT

o O oo

S-Designor March 11, 1997 Page 81
81

Physical Data Model

fms

employee EMPLOYEE 0
faculty FACULTY 0
fms_cfg FMS_CFG 0
labor_chgs LABOR_CHGS 0
labor_les LABOR_LES 0
military MILITARY 0
optar_req OPTAR_REQ 0
other_leave OTHER_LEAVE 0
other_Iv_type OTHER_LV_TYPE 0
pi Pl 0
salary_history SALARY_HISTORY 0
sponsor SPONSOR 0
staff STAFF 0
travel TRAVEL 0
travel requests TRAVEL_REQUESTS 0
Table account
Name: account
Code: ACCOUNT
Label: Account Information
Number:
PK constraint:
Options
Column List
Name Code Type P M
bal_cont_ipa BAL_CONT_IPA decimal(12§{No |No
2)
bal_cont_mipr BAL_CONT_MIPR decimal(12]No {No
2)
bal_cont_oth BAL_CONT_OTH decimal(12{No [No
2)
S-Designor March 11, 1997 Page 82

82

Physical Data Model fms

bal_fac_labor BAL_FAC_LABOR decimal(12|No |No
2)

bal_optar BAL_OPTAR decimal(12} No [No
.2)

bal_spt_labor BAL_SPT_LABOR decimal(12|No |No
2)

bal_travel BAL_TRAVEL decimal(12]No [No
2)

budget_page_date BUDGET_PAGE_DATE date No [No

date_received DATE_RECEIVED date No |No

expir_date EXPIR_DATE date No |No

fund_type FUND_TYPE char(2) No |Yes

indirect_cost INDIRECT_COST decimal(12jNo |Yes
2)

init_cont_ipa INIT_CONT_IPA decimal(12|No |Yes
2)

init_cont_mipr INIT_CONT_MIPR decimal(12No |[Yes
2)

init_cont_oth INIT_CONT_OTH decimai(12]No |Yes
2)

init_fac_fabor_$ INIT_FAC_LABOR_$ decimal(12] No] Yes
2)

init_optar_$ INIT_OPTAR_S decimal(12|No |Yes
2)

init_spt_labor_$ INIT_SPT_LABOR_$ decimal(12§No]Yes
2)

init_travel_$ INIT_TRAVEL_$ decimal(12fNo | Yes
2)

jon JON char(5) Yes | Yes

labor_jon LABOR_JON char(5) No |No

remarks REMARKS char(100) |No [No

segment_#s SEGMENT_#S char(9) No [No

serial_#s SERIAL_#S char(11) No |No

spon_id_code SPON_ID_CODE char(6) No |No

title TITLE char(40) No |No

BAL_CONT_IPA

Check

S-Designor March 11, 1997 Page 83

83

Physical Data Model fms

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No ' Lowercase: No Can't modify: No
List of values:

BAL_CONT_MIPR

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No
List of values:

BAL_CONT_OTH

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No
List of values:

S-Designor March 11, 1997 Page 84
84

Physical Data Model

fms

BAL_FAC_LABOR

Check

Domain:

Low value:

High value:

Defauit value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

BAL_OPTAR

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

BAL_SPT_LABOR

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:

S-Designor

March 11, 1997
85

Page 85

Physical Data Model

fms

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

BAL_TRAVEL

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can’'t modify:

No

BUDGET_PAGE_DATE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

DATE_RECEIVED

Check

Domain:
Low value:

S-Designor

March 11, 1997
86

Page 86

Physical Data Model

fms

High value:
Default value:
Unit:

Format:

Uppercase: No

List of values:

Lowercase: No

Can’t modify:

No

EXPIR_DATE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:

Uppercase: No

List of values:

Lowercase: No

Can't modify:

No

FUND_TYPE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:

Uppercase: No

List of values:

Lowercase: No

Can’t modify:

No

INDIRECT_COST

S-Designor

March 11, 1997
87

Page 87

Physical Data Model fms

Check

Domain:

Low value: 0.00

High value:

Default value: 0.00

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No

List of values:

INIT_CONT_IPA

Check

Domain:

Low value: 0

High value:

Default value: 0

Unit:

Format:

Uppercase: No Lowercase: No Can’'t modify: No
List of values:

INIT_CONT_MIPR

Check

Domain:

Low value: 0

High value:

Default value: 0

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No
List of values:

S-Designor March 11, 1997 Page 88
88

Physical Data Model

fms

INIT_CONT_OTH

Check

Domain:

Low value: 0]
High value:

Default value: 0
Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify: No

INIT_FAC_LABOR_$

Check

Domain:

Low value: 0.00
High value:

Default value: 0.00
Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify: No

INIT_OPTAR_$

Check

Domain:

Low value: 0.00
High value:

Defauit value: 0.00
Unit:

S-Designor

March 11, 1997
89

Page 89

Physical Data Model

fms

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

INIT_SPT_LABOR_$

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

0.00

0.00

No

Lowercase: No

Can’t modify:

No

INIT_TRAVEL_$

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

0.00

0.00

No

Lowercase: No

Can't modify:

No

JON

Check

Domain:

S-Designor

March 11, 1997
90

Page 90

Physical Data Model

fms

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

LABOR_JON

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

Yes

Lowercase: No

Can't modify:

No

REMARKS

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

SEGMENT_#S

S-Designor

March 11, 1997
91

Page 91

Physical Data Model fms

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No
List of values:

SERIAL_#S

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No
List of values:

SPON_ID_CODE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No
List of values:

S-Designor March 11, 1997 Page 92
92

Physical Data Model

fms

TITLE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify: No

Index List
index Code P F) C Column Code Sort
ACCOUNT_FK1 No]Yes |No |No }SPON_ID_CODE ASC
ACCOUNT PK Yes |[No]Yes [No]JJON ASC
Reference to List
Reference to Primary Key Foreign Key
SPONSOR SPON_ID _CODE SPON ID CODE
Reference by List
Referenced by Primary Key Foreign Key
TRAVEL JON JON
LABOR_CHGS JON JON
CONTRACTS JON JON
OPTAR_REQ JON JON
PI JON JON
Table adp_proj_info
S-Designor March 11, 1997 Page 93

93

Physical Data Model

fms

Name:

Code:

Label:
Number:

PK constraint:

adp_proj_info
ADP_PROJ_INFO
ADP Project information

Options

Column List

Name

Code

Type

adp_proj_#
dept_code
fy_ending
poc_code
proj_cost_auth

proj_mgr_code
proj_name

ADP_PROJ_#
DEPT_CODE
FY_ENDING
POC_CODE
PROJ_COST_AUTH

PROJ_MGR_CODE
PROJ_NAME

char(7)
char(2)
date

char(4)

12)
char(4)
char(40)

decimai(12] No

Yes
No
No
No

No

No

Yes
No
No
No
No

No
No

ADP_PROJ_#

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify: No

DEPT_CODE

S-Designor

March 11, 1997
94

Page 94

Physical Data Model

fms

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase:

No

Can't modify:

No

FY_ENDING

Check

Domain:
Low value:

~ High value:
Defauit value:
Unit:
Format:
Uppercase:
List of values:

09/30/97

No

Lowercase:

No

Can't modify:

No

POC_CODE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase:

No

Can't modify:

No

S-Designor

March 11, 1997

95

Page 95

Physical Data Model fms

PROJ_COST_AUTH

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No
List of values:

PROJ_MGR_CODE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No
List of values:

PROJ_NAME

Check

Domain:

Low value:
High value:
Default value:
Unit:

S-Designor March 11, 1997 Page 96
96

Physical Data Model

fms

Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:
Index List
Index Code P F U C Column Code Sort
ADP_PROJ_INFO_FK1 No |]Yes |[No {No |DEPT_CODE ASC
ADP_PROJ_INFO_FK2 No]Yes |[No |No |PROJ_MGR_CODE ASC
ADP_PROJ_INFO_FK3 No |Yes [No |No |POC_CODE ASC
ADP_PROJ INFO PK Yes |No JYes |[No JADP PROJ # ASC
Reference to List
Reference to Primary Key Foreign Key
DEPARTMENT DEPT_CODE DEPT_CODE
EMPLOYEE EMP_ID_CODE PROJ_MGR_CODE
EMPLOYEE EMP _ID CODE POC CODE
Reference by List
Referenced by Primary Key Foreign Key
OPTAR_REQ ADP _PROJ # ADP_PROJ #
Table contracts
Name: contracts
Code: CONTRACTS
Label: Departmental Contracts (charged to departmental accounts)
Number:
PK constraint:
Options
S-Designor March 11, 1997 Page 97

97

Physical Data Model

fms

Description

Departmental Contracts (charged to departmental accounts)

Column List

Name Code Type P M
actual_cost ACTUAL_COST decimal(12}No |INo
2)
contract_type CONTRACT_TYPE char(1) Yes | Yes
contractor CONTRACTOR char(20) No [No -
delivery_date DELIVERY_DATE date No |INo
description DESCRIPTION char(50) No |No
doc_# DOC_# char(9) Yes | Yes
fy_ending FY_ENDING date No |]Yes
jon JON char(5) Yes | Yes
order_date ORDER_DATE date No [No
po_# PO_# char(12) No [No
po_date PO_DATE date No |No
proj_cost PROJ_COST decimal(12 | No] No
,2)

requester REQUESTER char(4) Yes | Yes
ACTUAL_COST
Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: Lowercase: No Can't modify: No

List of values:
CONTRACT_TYPE
S-Designor March 11, 1997 Page 98

98

Physical Data Model

fms

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase:

No

Can't modify:

No

CONTRACTOR

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase:

No

Can't modify:

No

DELIVERY_DATE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase:

No

Can't modify:

No

S-Designor

March 11, 1997

99

Page 99

Physical Data Model

fms

DESCRIPTION

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No Can't modify:

No

DOC_#

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No Can't modify:

No

FY_ENDING

Check

Domain:

Low value:
High value:
Default value:
Unit:

9/30/97

S-Designor

March 11, 1997
100

Page 100

Physical Data Model

fms

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

JON

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

ORDER_DATE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

PO_#

Check

Domain:

S-Designor

March 11, 1997
101

Page 101

Physical Data Model

fms

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

PO_DATE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

PROJ_COST

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

REQUESTER

S-Designor

March 11, 1997
102

Page 102

Physical Data Model

fms

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify: No

Index List
Index Code P F (Y) C Column Code Sort
CONTRACTS_PK Yes [No |jYes [No }]JON ASC
CONTRACT_TYPE ASC
REQUESTER ASC
DOC_# ASC
Reference to List
Reference to Primary Key Foreign Key
ACCOUNT JON JON
EMPLOYEE EMP_ID CODE REQUESTER
Table department
Name: department
Code: DEPARTMENT
Label: Department Info
Number:
PK constraint:
Options
S-Designor March 11, 1997 Page 103

103

Physical Data Model

fms

Column List

Name

Code

Type P M

chair_code
dept_code
dept_name

CHAIR_CODE
DEPT_CODE
DEPT_NAME

char(4) No {No
char(2) Yes | Yes
char(40) No]No

CHAIR_CODE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase:

No

Can't modify: No

DEPT_CODE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase:

No

Can't modify: No

DEPT_NAME

S-Designor

March 11, 1997

Page 104

Physical Data Model

fms

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify: No

Index List

Index Code

Column Code Sort

DEPARTMENT_PK

Yes

No

Yes jNo

DEPT_CODE ASC

Reference by List

Referenced by

Primary Key

Foreign Key

EMPLOYEE
ADP_PROJ_INFO

DEPT_CODE
DEPT_CODE

DEPT_CODE
DEPT_CODE

Table employee

Name: employee

Code: EMPLOYEE

Label: Employee Information

Number:
PK constraint:

Options

Column List

S-Designor

March 11, 1997

105

Page 105

Physical Data Model

fms

Name Code Type P M
accel_rate ACCEL_RATE decimal(3,{No [No
2)
base_salary BASE_SALARY decimal(10 | No | No
2)
bldg_# BLDG_# char(3) No |No
category CATEGORY char No |Yes
city CITY char(15) No }JNo
dept_code DEPT_CODE char(2) No |No
eff_sal_date EFF_SAL_DATE date No |No
emp_code EMP_CODE char(2) No]Yes
emp_id_code EMP_ID_CODE char(4) Yes | Yes
first name FIRST_NAME char(15) No }No
home_phone HOME_PHONE char(13) No [No
last_name LAST_NAME char(15) No |]Yes
mi Mi char(1) No [No
room_# ROOM_# char(5) No]No
spouse_fname SPOUSE_FNAME char(15) No]No
ssn SSN char(11) No [No
state STATE char(2) No [No
street address STREET_ADDRESS char(20) No |No
term_date TERM_DATE date No [No
work_phone WORK_PHONE char(13) No |No
zipcode ZIPCODE char(10) No §No
ACCEL_RATE
Check
Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase: Lowercase: No Can't modify: No
List of values:
S-Designor March 11, 1997 Page 106

106

Physical Data Model

fms

BASE_SALARY

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No
List of values:

Can't modify: No

BLDG_#

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No
List of values:

Can't modify: No

CATEGORY

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:

S-Designor March 11, 1997
107

Page 107

Physical Data Model

fms

Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

CITY

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

DEPT_CODE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

EFF_SAL_DATE

Check

Domain:
Low value:

S-Designor

March 11, 1997
108

Page 108

Physical Data Model

fms

High value:

Default value: 10/01/95
Unit:

Format:

Uppercase: No

List of values:

Lowercase: No

Can't modify:

No

EMP_CODE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can’'t modify:

No

EMP_ID_CODE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

FIRST_NAME

S-Designor

March 11, 1997
109

Page 109

Physical Data Model

fms

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

HOME_PHONE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

LAST_NAME

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

S-Designor

March 11, 1997

110

Page 110

Physical Data Model

fms

Check

Domain:

LLow value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

ROOM_#

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

SPOUSE_FNAME

Check

Domain:

Low value:
High value:
Default value:
Unit:

S-Designor

March 11, 1997
111

Page 111

Physical Data Model fms

Format:
Uppercase: No Lowercase: No Can't modify: No

List of values:

SSN

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No
List of values:

STATE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No

List of values:

STREET_ADDRESS

Check

Domain:

S-Designor March 11, 1997 Page 112
112

Physical Data Model

fms

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase:

Can't modify.

No

TERM_DATE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase:

Can't modify:

No

WORK_PHONE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase:

Can't modify:

No

ZIPCODE

S-Designor

March 11, 1997

Page 113

Physical Data Model

fms

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:

Uppercase: No

List of values:

Lowercase: No

Can't modify: No

Index List

Index Code P F U % Column Code Sort
EMPLOYEE_FK1 No |Yes |[No |No]DEPT_CODE ASC
EMPLOYEE PK Yes |Yes |Yes {No JEMP ID CODE ASC
Reference to List

Reference to Primary Key Foreign Key
DEPARTMENT DEPT _CODE DEPT CODE
Reference by List

Referenced by Primary Key Foreign Key
LABOR_CHGS EMP_ID_CODE EMP_ID_CODE
OPTAR_REQ EMP_ID_CODE EMP_ID_CODE
SALARY_HISTORY EMP_ID_CODE EMP_ID_CODE
Pl EMP_ID_CODE EMP_ID_CODE
CONTRACTS EMP_ID_CODE REQUESTER
LABOR_LES EMP_ID_CODE EMP_ID_CODE
FACULTY EMP_ID_CODE EMP_ID_CODE
STAFF EMP_ID_CODE EMP_ID_CODE
MILITARY EMP_ID_CODE EMP_ID_CODE
ADP_PROJ_INFO EMP_ID_CODE PROJ_MGR_CODE
ADP_PROJ _INFO EMP_ID CODE POC_CODE
S-Designor March 11, 1997 Page 114

114

Physical Data Model fms

Table faculty

Name: facuity

Code: FACULTY

Label: Faculty Specialization of Employee Table
Number:

PK constraint:

Options

Column List

Name Code Type P M

civ_grade CIV_GRADE char(5) No [No
emp_id_code EMP_ID_CODE char(4) Yes | Yes
step STEP char(2) No |No

CIV_GRADE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No
List of values:

EMP_ID_CODE

Check

S-Designor March 11, 1997 Page 115
115

Physical Data Model

fms

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase:

No

Can't modify:

No

STEP

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase:

No

Can't modify:

No

Index List

Index Code

Column Code

Sort

FACULTY PK

Yes

Yes

Yes

No

EMP_ID_CODE

ASC

Reference to List

Reference to

Primary Key

Foreign Key

EMPLOYEE

EMP_ID_CODE

EMP_ID_CODE

Table fms_cfg

Name:
Code:

fms_cfg
FMS_CFG

S-Designor

March 11, 1997

116

Page 116

Physical Data Model

fms

Label:
Number:

PK constraint:

FMS Configuration Info

Options

Column List

Name

Code

Type

ot_cap

rr_ot_rate_fact

yr_labor _hrs

current_fy_end_date

CURRENT_FY_END_DATE
OT_CAP

RR_OT_RATE_FACT

YR_LABOR_HRS

date

Yes

decimal(10 | No

2)

decimal(6, | No

4)
integer

No

Yes
No

No

No

CURRENT_FY_END_DATE

Check

Domain:
Low value:
High value:

Defauit value:

Unit:
Format:
Uppercase:

List of values:

Lowercase: No

Can't modify:

No

OT_CAP

Check

Domain:
Low value:

S-Designor

March 11, 1997
117

Page 117

T

Physical Data Model

fms

High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

RR_OT_RATE_FACT

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

YR_LABOR_HRS

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

Iindex List

S-Designor

March 11, 1997
118

Page 118

Physical Data Model fms

index Code P F U C Column Code Sort
FMS CFG PK Yes JNo]JYes [No JCURRENT FY END DATE ASC
Table labor_chgs
Name: labor_chgs
Code: LABOR_CHGS
Label: Labor charges made against accounts
Number: '
PK constraint:
Options
Description
This table contains the labor charges made against accounts by pay period ending date and employee.
Column List
Name Code Type P M
emp_id_code EMP_ID_CODE char(4) Yes | Yes
fy_ending FY_ENDING date No |Yes
hours HOURS integer No |]Yes
jon JON char(5) Yes | Yes
ot_hours OT_HOURS integer No |Yes
ppe_date PPE_DATE date Yes | Yes
total_chg TOTAL_CHG decimal(12]No |No
2)
EMP_ID_CODE
Check
Domain:
Low value:
High value:
S-Designor March 11, 1997 Page 119

119

Physical Data Model

fms

Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase:

No

Can't modify:

No

FY_ENDING

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

9/30/97

No

Lowercase:

No

Can't modify:

No

HOURS

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase:

No

Can't modify:

No

JON

Check

S-Designor

March 11, 1997

120

Page 120

Physical Data Model

fms

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

OT_HOURS

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

PPE_DATE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

S-Designor

March 11, 1997
121

Page 121

Physical Data Model

fms

TOTAL_CHG

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:

Uppercase: No

List of values:

Lowercase: No

Can't modify: No

Index List
Index Code P F U C Column Code Sort
LABOR_CHGS_PK Yes {Yes] Yes |No |EMP_ID_CODE ASC
PPE_DATE ASC
JON ASC
Reference to List
Reference to Primary Key Foreign Key -
LABOR_LES EMP_ID_CODE EMP_ID_CODE
PPE_DATE PPE_DATE
ACCOUNT JON JON
EMPLOYEE EMP_ID CODE EMP ID CODE
Table labor_les
Name: labor_les
Code: LABOR_LES
Label: Labor -- Leave and Holiday Charges
Number:
PK constraint:
S-Designor March 11, 1997 Page 122

122

Physical Data Model

fms

Options

Column List

Name

Code

Type

al_hours
emp_id_code
hol_hours
lwop_hours
ppe_date
sl_hours

AL_HOURS
EMP_ID_CODE
HOL_HOURS
LWOP_HOURS
PPE_DATE
SL_HOURS

integer
char(4)
integer
integer
date

integer

No
Yes
No
No
Yes
No

No
Yes
No
No
Yes
No

AL_HOURS

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

Lowercase: No

Can't modify: No

EMP_ID_CODE
Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:

S-Designor

March 11, 1997
123

Page 123

Physical Data Model fms

Uppercase: No Lowercase: No Can't modify: No
List of values:

HOL_HOURS

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No
List of values:

LWOP_HOURS

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No
List of values:

PPE_DATE

Check

Domain:
Low value:

S-Designor March 11, 1997 Page 124
124

Physical Data Model

fms

High value:
Default value:
Unit:

Format:

Uppercase: No

List of values:

Lowercase: No

Can’'t modify:

No

SL_HOURS

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:

Uppercase: No

List of values:

Lowercase: No

Can’'t modify:

No

Index List

Index Code

Column Code

Sort

LABOR_LES_PK

Yes

Yes |No

EMP_ID_CODE
PPE_DATE

ASC
ASC

Reference to List

Reference to

Primary Key

Foreign Key

EMPLOYEE

EMP_ID_CODE

EMP_ID_CODE

Reference by List

Referenced by

Primary Key

Foreign Key

LABOR_CHGS

EMP_ID_CODE
PPE_DATE

EMP_ID_CODE
PPE_DATE

S-Designor

March 11, 1997
125

Page 125

Physical Data Model fms

OTHER_LEAVE EMP_ID_CODE EMP_ID_CODE
PPE_DATE PPE_DATE
Table military
Name: military
Code: MILITARY
Label: Military Specialization of Employee Table
Number:

PK constraint:

Options

Column List

Name Code Type P M

emp_id_code EMP_ID_CODE char(4) Yes | Yes
mil_grade MIL_GRADE char(5) No |No
service SERVICE char(4) No |No

EMP_ID_CODE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No Can't modify: No

List of values:

MIL_GRADE

S-Designor March 11, 1997 Page 126
126

Physical Data Model

fms

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:

Uppercase: No

List of values:

Lowercase: No

Can't modify: No

SERVICE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:

Uppercase: No

List of values:

Lowercase: No

Can't modify: No

Index List

Index Code P F) C Column Code Sort
MILITARY PK Yes JYes |Yes [No JEMP ID CODE ASC
Reference to List

Reference to Primary Key Foreign Key
EMPLOYEE EMP _ID CODE EMP_ID CODE
Table optar_req
S-Designor March 11, 1997 Page 127

127

Physical Data Model

fms

Name:

Code:

Label:
Number:

PK constraint:

OPTAR_REQ
OPTAR Request Information

Options

Description

OPTAR Request Information

Column List

Name Code Type P M

actual_cost ACTUAL_COST decimal(11] No {No
72)

adp_proj_# ADP_PROJ_# char(7) No |No

category CATEGORY char(1) No [No

description DESCRIPTION char(50) No |No

doc_# DOC_# char(9) Yes {Yes

emp_id_code EMP_ID_CODE char(4) Yes | Yes

fy_ending FY_ENDING date No |Yes

issued_by ISSUED_BY char{(15) No |No

jon JON char(5) Yes |Yes

order_date ORDER_DATE date No |No

po_# PO_# char(12) No |No

po_date PO_DATE date No [No

proj_cost PROJ_COST decimal(11 {No {No
2)

recvd date RECVD DATE date No |No

ACTUAL_COST

Check

S-Designor March 11, 1997 Page 128

128

Physical Data Model

fms

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

ADP_PROJ_#

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

CATEGORY

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

S-Designor

March 11, 1997
129

Page 129

Physical Data Model

fms

DESCRIPTION

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No Can't modify:

No

DOC_#

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No Can't modify:

No

EMP_ID_CODE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:

S-Designor

March 11, 1997
130

Page 130

Physical Data Model

fms

Uppercase:
List of values:

No

Lowercase:

No

Can't modify:

No

FY_ENDING

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

9/30/97

No

Lowercase:

No

Can't modify:

No

ISSUED_BY

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase:

No

Can't modify:

No

JON

Check

Domain:
Low value:

S-Designor

March 11, 1997
131

Page 131

Physical Data Model

fms

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can’'t modify:

No

ORDER_DATE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

PO_#

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

PO_DATE

S-Designor

March 11, 1997
132

Page 132

Physical Data Model

fms

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

PROJ_COST

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

RECVD_DATE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

S-Designor

March 11, 1997
133

Page 133

Physical Data Model fms
Index List
Index Code P F u c Column Code Sort
OPTAR_REQ_FK1 No]Yes [No [No }ADP_PROJ_# ASC
OPTAR_REQ_PK Yes [No [Yes [No |JON ASC
EMP_ID_CODE ASC
DOC _# ASC
Reference to List
Reference to Primary Key Foreign Key
EMPLOYEE EMP_ID_CODE EMP_ID_CODE
ACCOUNT JON JON
ADP_PROJ_INFO ADP PROJ_# ADP_PROJ #
Table other_leave
Name: other_leave
Code: OTHER_LEAVE
Label: "Other" leave info per employee per pay period
Number:

PK constraint:

Options

Description

"Other" leave info per employee per pay period

Column List

Name Code Type P M
emp_id_code EMP_ID_CODE char(4) Yes | Yes
hours HOURS integer No [|No
S-Designor March 11, 1997 Page 134

134

Physical Data Model

fms

ppe_date PPE_DATE
type TYPE

Idate lYes |Yes
char(2) Yes | Yes

EMP_ID_CODE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No
List of values:

Can't modify: No

HOURS

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No Lowercase: No
List of values:

Can't modify: No

PPE_DATE

Check

Domain:
Low value:
High value:

S-Designor March 11, 1997
135

Page 135

Physical Data Model

fms

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify: No

TYPE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify: No

Index List
Index Code P F U C Column Code Sort
OTHER_LEAVE_PK Yes |Yes | Yes [No |EMP_ID_CODE ASC
PPE_DATE ASC
TYPE ASC
Reference to List
Reference to Primary Key Foreign Key
LABOR_LES EMP_ID_CODE EMP_ID_CODE
PPE_DATE PPE_DATE
OTHER LV TYPE OTHER LV TYPE_CODE TYPE
Table other_Iv_type
Name: other_Iv_type
S-Designor March 11, 1997 Page 136

136

Physical Data Model

fms

Number:
PK constraint:

Code: OTHER_LV_TYPE
Label: Other Leave Type Lookup Table

Options

Column List

Name

Code

Type

description
other_Iv_type code

DESCRIPTION

OTHER_LV_TYPE_CODE

char(25)
char(2)

No
Yes

No
Yes

DESCRIPTION

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

OTHER_LV_TYPE_CODE

Check

Domain:

Low value:
High value:
Default value:
Unit:

S-Designor

March 11, 1997

137

Page 137

Physical Data Model

fms

Format:
Uppercase: No
List of values:

Lowercase: No

Can't modify: No

Index List

Index Code

Column Code Sort

OTHER LV TYPE_PK

Yes I|No |JYes |No

OTHER_LV_TYPE_CODE ASC

Reference by List

Referenced by

Primary Key

Foreign Key

OTHER _LEAVE

OTHER _LV_TYPE_CODE

TYPE

Table pi
Name: pi
Code: PI
Label: Principal investigator
Number:

PK constraint:

Options
Column List

Name Code Type P M
emp_id_code EMP_ID_CODE char(4) Yes |Yes
jon JON char(d) Yes | Yes
EMP_ID_CODE
Check
S-Designor March 11, 1997 Page 138

138

Physical Data Model

fms

Domain:

Low value:

High value:

Defaulit value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify: No

JON

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify: No

Index List

Index Code P F U C Column Code Sort
PI_PK Yes |Yes |Yes |No JEMP_ID_CODE ASC
JON ASC
Reference to List
Reference to Primary Key Foreign Key
EMPLOYEE EMP_ID_CODE EMP_ID_CODE
ACCOUNT JON JON
Table salary_history
S-Designor March 11, 1997 Page 139

139

Physical Data Model!

fms

Name:
Code:

salary_history
SALARY_HISTORY

Label:
Number:
PK constraint:

Employee salary history (including acceleration rate)

Options

Description

Employee salary history (including acceleration rate)

Column List

Name Code Type P M
accel_rate ACCEL_RATE decimal(3,| No |}Yes
2)
base_salary BASE_SALARY decimal(10 | No | Yes
2)
begin_date BEGIN_DATE date Yes | Yes
emp_id_code EMP_ID_CODE char(4) Yes | Yes
end_date END DATE date No |Yes
ACCEL_RATE
Check
Domain:
Low value:
High value:
Default value:
Unit:
Format:
Uppercase: No Lowercase: No Can't modify: No
List of values:
S-Designor March 11, 1997 Page 140

140

Physical Data Model

fms

BASE_SALARY

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

BEGIN_DATE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

EMP_ID_CODE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:

S-Designor

March 11, 1997
141

Page 141

Physical Data Model

fms

Uppercase: No

List of values:

Lowercase: No

Can't modify: No

END_DATE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:

Uppercase: No

List of values:

Lowercase: No

Can't modify: No

Index List
index Code P F 1Y) C Column Code Sort
SALARY_HISTORY_PK Yes |No |Yes |[No |EMP_ID_CODE ASC
BEGIN DATE ASC
Reference to List
Reference to Primary Key Foreign Key
EMPLOYEE EMP_ID CODE EMP_ID CODE
Table sponsor
Name: sponsor
Code: SPONSOR
Label: Research Sponsor {nfo
Number:
PK constraint:
March 11, 1997 Page 142

S-Designor

142

Physical Data Model

fms

Options

Column List

Name

Code

Type

address

city

fax

name

phone
spon_id_code
state

zipcode

ADDRESS
CITY

FAX

NAME

PHONE
SPON_ID_CODE
STATE
ZIPCODE

char(40)
char(15)
char(13)
char(30)
char(13)
char(6)

char(2)

char(10)

No
No
No
No
No
Yes
No
No

No
No
No
No
No

Yes

No
No

ADDRESS

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

Lowercase: No

Can't modify: No

CITY

Check

Domain:

Low value:
High value:
Default value:

S-Designor

March 11, 1997
143

Page 143

Physical Data Model

fms

Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

FAX

Check

Domain:

Low value:
High value:
Defauit value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

NAME

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

PHONE

Check

S-Designor

March 11, 1897
144

Page 144

Physical Data Model

fms

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

SPON_ID_CODE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

STATE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No

Lowercase: No

Can't modify:

No

S-Designor

March 11, 1997
145

Page 145

Physical Data Model

fms

ZIPCODE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

Index List

index Code

Column Code

Sort

SPONSOR_PK

Yes |No |Yes |No

SPON_ID_CODE

ASC

Reference by List

Referenced by

Primary Key

Foreign Key

ACCOUNT

SPON_ID_CODE

SPON_ID_CODE

Table staff

Name: staff
STAFF
Staff Specialization of Employee Table

Code:

Label:
Number:

PK constraint:

Options

Column List

S-Designor

March 11, 1997

146

Page 146

Physical Data Model

fms

Name

Code Type

civ_grade
emp_id_code
step

CIV_GRADE char(5)
EMP_ID_CODE char(4)
STEP char(2)

No
Yes
No

No
Yes
No

CIV_GRADE

Check

Domain:

Low value:
High value:
Defauit value:
Unit:

Format:
Uppercase:
List of values:

Lowercase: No

Can't modify: No

EMP_ID_CODE

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

Lowercase: No

Can't modify: No

STEP

Check

Domain:

S-Designor

March 11, 1997
147

Page 147

Physical Data Model

fms

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify: No

Index List
index Code P F U C Column Code Sort
STAFF_PK Yes |JYes |Yes |[No |EMP ID CODE ASC
Reference to List
Reference to Primary Key Foreign Key
EMPLOYEE EMP_ID_CODE EMP _ID CODE
Table travel
Name; travel
Code: TRAVEL
Label: Travel Order Info
Number:
PK constraint:
Options
Column List
Name Code Type P M
actual_cost ACTUAL_COST decimal(10 [No]No
2)
destination DESTINATION char(20) No |No
S-Designor March 11, 1997 Page 148

148

Physical Data Model

fms

fy_ending

jon
num_trav_days
proj_cost

to#
to_date
trav_start date

FY_ENDING
JON
NUM_TRAV_DAYS
PROJ_COST

TO#
TO_DATE
TRAV_START DATE

date
char(5)
integer

2)
char(15)
date
date

No
No
No

decimal(10 | No

Yes
No
No

Yes
Yes
No
No

Yes
No
No

ACTUAL_COST

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

Lowercase: No

Can't modify: No

DESTINATION

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

Lowercase: No

Can't modify: No

FY_ENDING

S-Designor

March 11, 1997
149

Page 149

Physical Data Model

fms

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase: No
List of values:

09/30/1997

Lowercase: No

Can't modify:

No

JON

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

NUM_TRAV_DAYS

Check

Domain:

Low value: 1
High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

S-Designor

March 11, 1997
150

Page 150

Physical Data Model

fms

PROJ_COST
Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

0.00

No Lowercase:

No

Can't modify:

No

TO#

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

No Lowercase:

No

Can’'t modify:

No

TO_DATE

Check

Domain:

Low value:
High value:
Default value:
Unit:

S-Designor

March 11, 1997

151

Page 151

Physical Data Model

fms

Format:
Uppercase: No
List of values:

Lowercase: No

Can't modify: No

TRAV_START_DATE

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify: No

Index List
Index Code P F U C Column Code Sort
TRAVEL_FK1 No |Yes |[No [No }JJON ASC
TRAVEL _PK Yes {No |Yes [No JTO# ASC
Reference to List
Reference to Primary Key Foreign Key
ACCOUNT JON JON
Reference by List
Referenced by Primary Key Foreign Key
TRAVEL REQUESTS TO# TO#
Table travel_requests
Name: travel_requests
March 11, 1997 Page 152

S-Designor

152

Physical Data Model

fms

Code:

Label:
Number:

PK constraint:

TRAVEL_REQUESTS
Information on travelers for a specific Travel Order

Options

Column List

Name

Code

Type

to#
trav_fname
trav_[name
trav_mi

To#
TRAV_FNAME
TRAV_LNAME
TRAV_Mi

char(15)
char(15)
char(15)
char(1)

Yes
Yes
Yes
No

Yes
Yes
Yes
No

TO#

Check

Domain:

Low value:
High value:
Default value:
Unit:

Format:
Uppercase:
List of values:

Lowercase: No

Can't modify: No

TRAV_FNAME

Check

Domain:
Low value:
High value:

S-Designor

March 11, 1997
153

Page 153

Physical Data Model

fms

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

TRAV_LNAME

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can't modify:

No

TRAV_MI

Check

Domain:

Low value:

High value:

Default value:

Unit:

Format:

Uppercase: No
List of values:

Lowercase: No

Can’t modify:

No

Index List

S-Designor

March 11, 1997
154

Page 154

Physical Data Model

fms

Index Code P) C Column Code Sort
TRAVEL_REQUESTS_PK Yes [No |Yes [No |TO# ASC
TRAV_LNAME ASC
TRAV_FNAME ASC
Reference to List
Reference to Primary Key Foreign Key
TRAVEL TO# TO#
Views
View List
Name Code Upd Gen
dr_chgs DR_CHGS No Yes
dt_chgs DT_CHGS No Yes
rr_chgs RR_CHGS No Yes
st_fmt_chgs ST_FMT_CHGS Yes Yes
st_ind_chgs ST_IND_CHGS Yes Yes
st_ir_chgs ST_IR_CHGS Yes Yes
st_omn_chgs ST_OMN_CHGS Yes Yes
st_ot_chgs ST_OT_CHGS Yes Yes
st_rr_chgs ST_RR_CHGS Yes Yes
st_tuit_chgs ST_TUIT_CHGS Yes Yes
View dr_chgs
Name: dr_chgs
Code: DR_CHGS
Label: DR Charges View
Usage: Query Only
Generate View
Code
S-Designor March 11, 1997 Page 155

155

Physical Data Model fms

select FACULTY.EMP_ID_CODE, LABOR_CHGS.PPE_DATE, LABOR_CHGS HOURS
from ACCOUNT, FACULTY, LABOR_CHGS

where FACULTY.EMP_ID_CODE = LABOR_CHGS.EMP_ID_CODE

and ACCOUNT.JON = LABOR_CHGS.JON

and ACCOUNT.FUND_TYPE = DR'

View dt_chgs

Name: dt_chgs

Code: DT_CHGS

Label: DT Charges View

Usage: Query Only
Generate View

Code

select FACULTY.EMP_ID_CODE, LABOR_CHGS PPE_DATE, LABOR_CHGS.HOURS
from ACCOUNT, FACULTY, LABOR CHGS

where FACULTY.EMP_ID_CODE = LABOR_CHGS.EMP_ID_CODE

and ACCOUNT.JON = LABOR_CHGS.JON

and ACCOUNT.FUND_TYPE = DT'

View rr_chgs

Name: m_chgs
Code: RR_CHGS
Label: RR Charges View

Usage: Query Only
Generate View

Code

select FACULTY.EMP _ID_CODE, ACCOUNT LABOR_JON, LABOR_CHGS PPE_DATE, LABOR_CHGS.HOURS
from ACCOUNT, FACULTY, LABOR_CHGS

where FACULTY.EMP_ID_CODE = LABOR_CHGS.EMP_ID_CODE

and ACCOUNT.JON = LABOR_CHGS.JON

and ACCOUNT.FUND_TYPE = ‘RR'

S-Designor March 11, 1997 Page 156
156

Physical Data Model fms

View st_fmt_chgs

Name: st_fmt_chgs
Code: ST_FMT_CHGS
Label: st_fmt_chgs
Usage: Updatable
Generate View
With check option

Code

select STAFF.EMP_ID_CODE, LABOR_CHGS.HOURS, LABOR_CHGS.PPE_DATE
from STAFF, LABOR_CHGS

where STAFF.EMP_ID_CODE = LABOR_CHGS.EMP_ID_CODE

and LABOR_CHGS.JON = 'FMT'

View st_ind_chgs

Name: st_ind_chgs
Code: ST_IND_CHGS
Label: st_ind_chgs
Usage: Updatable
Generate View
With check option

Code

select STAFF.EMP_ID_CODE, LABOR_CHGS HOURS, LABOR_CHGS.PPE_DATE
from STAFF, LABOR_CHGS

where STAFF EMP_ID CODE = LABOR_CHGS.EMP_ID CODE

and LABOR_CHGS.JON = "IND'

View st_ir_chgs

Name: st_ir_chgs
Code: ST_IR_CHGS
Label: st_ir_chgs
Usage: Updatabie

S-Designor March 11, 1997
157

Page 157

Physical Data Model fms

Generate View
With check option

Code

select ACCOUNT.LABOR_JON, STAFF.EMP_ID_CODE, LABOR_CHGS.HOURS, LABOR_CHGS PPE_DATE
from ACCOUNT, STAFF, LABOR_CHGS

where STAFF.EMP_ID_CODE = LABOR_CHGS.EMP_ID_CODE

and ACCOUNT.JON = LABOR_CHGS.JON

and ACCOUNT.FUND_TYPE = 'IR'

View st_omn_chgs

Name: st_omn_chgs
Code: ST_OMN_CHGS
Label: st_omn_chgs

Usage: Updatable
Generate View
With check option

Code

select STAFF.EMP _ID CODE, LABOR_CHGS.HOURS, LABOR_CHGS.PPE_DATE
from STAFF, LABOR_CHGS

where STAFF.EMP ID CODE = LABOR_CHGS.EMP_ID_CODE

and LABOR_CHGS.JON = 'O&MN'

View st_ot_chgs

Name: st_ot_chgs

Code: ST_OT_CHGS

Label: st_ot_chgs

Usage: Updatable
Generate View
With check option

Code
select ACCOUNT LABOR_JON, STAFF.EMP_ID_CODE, LABOR_CHGS.OT_HOURS, LABOR_CHGS PPE_DATE

S-Designor March 11, 1997 Page 158
158

Physical Data Model fms

from ACCOUNT, STAFF, LABOR_CHGS
where STAFF.EMP_ID_CODE = LABOR_CHGS.EMP_ID_CODE
and ACCOUNT.JON = LABOR_CHGS.JON

and LABOR_CHGS.OT_HOURS > 0

View st_rr_chgs

Name: st_rr_chgs

Code: ST_RR_CHGS

Label: st_rr_chgs

Usage: Updatable
Generate View
With check option

Code

select ACCOUNT.LABOR_JON, STAFF.EMP_ID CODE, LABOR_CHGS.HOURS, LABOR_CHGS.PPE_DATE

from ACCOUNT, STAFF, LABOR_CHGS

where STAFF.EMP_ID_CODE = LABOR_CHGS EMP_ID_CODE
and ACCOUNT.JON = LABOR_CHGS.JON

and ACCOUNT.FUND_TYPE = 'RR'

View st_tuit_chgs

Name: st_tuit_chgs
Code: ST_TUIT_CHGS
Label: st_tuit_chgs

Usage: Updatable
Generate View
With check option

Code

select STAFF.EMP_ID_CODE, LABOR_CHGS.HOURS, LABOR_CHGS.PPE_DATE
from STAFF, LABOR_CHGS

where STAFF.EMP_ID_CODE = LABOR_CHGS.EMP_ID_CODE

and LABOR_CHGS.JON = "TUIT"

Triggers

S-Designor March 11, 1997
159

Page 159

Physical Data Model

fms

Trigger List
Table Trigger User-
Defined
ACCOUNT tib_account No
ACCOUNT tia_account Yes
ACCOUNT tua_account Yes
ADP_PROJ_INFO tib_adp_proj_info No
CONTRACTS tib_contracts No
CONTRACTS tia_contracts Yes
CONTRACTS tub_contracts No
CONTRACTS tua_contracts Yes
CONTRACTS tda_contracts Yes
EMPLOYEE tib_employee No
FACULTY tib_faculty No
LABOR_CHGS tib_labor_chgs No
LABOR_CHGS tia_labor_chgs Yes
LABOR_CHGS tua_labor_chgs Yes
LABOR_CHGS tda_labor_chgs Yes
LABOR_LES tib_labor_les No
MILITARY tib_military No
OPTAR_REQ tib_optar_req No
OPTAR_REQ tia_optar_req Yes
OPTAR_REQ tua_optar_req Yes
OPTAR_REQ tda_optar_req Yes
OTHER_LEAVE tib_other_leave No
OTHER_LEAVE tub_other_leave No
Pi tib_pi No
SALARY_HISTORY tib_salary_history No
STAFF tib_staff No
TRAVEL tib_travel No
TRAVEL tia_travel Yes
TRAVEL tua_travel Yes
TRAVEL tda_travel Yes
TRAVEL REQUESTS tib_travel requests No
Procedures
S-Designor March 11, 1997 Page 160

160

Physical Data Model

fms

Procedure List

Name Code Func
calc_bal_contract CALC_BAL_CONTRACT No
calc_bal_fac_labor CALC_BAL_FAC_LABOR No
calc_bal_optar CALC_BAL_OPTAR No
calc_bal_spt_labor CALC_BAL_SPT_LABOR No
calc_bal trav CALC BAL _TRAV No
S-Designor March 11, 1997 Page 161

161

162

INITIAL DISTRIBUTION LIST

. Defense Technical InformationCenter b. .

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

. DudleyKnox Library

Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

. Chairman, Computer Science Department

Code CS/Lt
Naval Postgraduate School
Monterey, CA 93943-5000

. Chairman, Operations Research Department

Code OR/Pe
Naval Postgraduate School
Monterey, CA 93943-5000

. Dr. C. Thomas Wu

Code CS/Wu

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

6. Dr.JamesEmery

Code 05

Associate Provost for Computer and Information Services
Naval Postgraduate School

Monterey, CA 93943-5000

. LCDRJohn A . Daley

Code CS/Da

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

163

No. Copies

O AIAN E. PITeS . . e

Code OR

Operations Research Department
Naval Postgraduate School
Monterey, CA 93943-5000

o Mr. and Mrs. Robert D. Pires

920-35th Street
Richmond, CA 94805

164

